
  

  

Abstract—We compared four algorithms for controlling a 
MEMS deformable mirror of an adaptive optics (AO) scanning 
laser ophthalmoscope. Interferometer measurements of the 
static nonlinear response of the deformable mirror were used to 
form an equivalent linear model of the AO system so that the 
classic integrator plus wavefront reconstructor type controller 
can be implemented. The algorithms differ only in the design of 
the wavefront reconstructor. The comparisons were made for 
two eyes (two individuals) via a series of imaging sessions. All 
four controllers performed similarly according to estimated 
residual wavefront error not reflecting the actual image quality 
observed. A metric based on mean image intensity did 
consistently reflect the qualitative observations of retinal image 
quality. Based on this metric, the controller most effective for 
suppressing the least significant modes of the deformable 
mirror performed the best. 

I. INTRODUCTION 

DAPTIVE optics has received considerable attention 
for vision science applications since it was first applied 

to the eye in 1997 and shown the first images of single cone 
photoreceptors in a living human eye [1]. Similar to how the 
earth’s atmosphere degrades the image quality of ground-
based telescopes, aberrations due to the eye’s optical 
imperfections degrade image quality making it difficult for 
clinicians and scientists to observe microscopic structures of 
the retina. Adaptive optics (AO) aims to remove most of 
these degradations by measuring the aberrations with a 
wavefront sensor (WFS), and through a feedback policy, 
adjust the surface profile of a deformable mirror (DM) to 
minimize the residual wavefront error. 

The first AO retinal imager was a standard flood 
illuminated fundus camera [1, 2] and since then, AO has 
been successfully combined with other technologies such as 
the scanning laser ophthalmoscope (AOSLO) [3, 4] and 
optical coherence tomography [5]. But in comparison to 
astronomical AO systems, the refinement of system 
performance, particularly at the control system level, has not 
been rigorously addressed. As the number of applications 
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increase, we can expect increases in the diversity of users 
and in the number of patients with more challenging optics 
(i.e. post-surgery, dry eyes, etc.). Improvements in system 
performance and robustness can significantly increase the 
clinical and scientific throughput (better quality images from 
a larger pool of patients) of an AO retinal imaging system. 

Earlier control systems used in vision science AO systems 
often exhibited immediate clipping (saturation in one 
direction) and excessively long convergence times which 
made them impractical for clinical deployment [1, 4]. Many 
of these problems were patient dependent (fixation stability, 
tear quality, retinal reflectivity, etc.), so there is a large 
variability in retinal image quality among subjects which 
further complicates clinical investigations. The standard 
basis for AO control loop design, which involves modeling 
the plant (DM and WFS) with a static interaction matrix, was 
adopted somewhat recently in vision science [2]. The control 
law is an integrator in series with some type of inverse of the 
plant called the wavefront reconstructor. The interaction 
matrix is generated experimentally through a series of open 
loop measurements of each actuator’s spatial response, and 
either the standard pseudo-inverse or regularized inverse is 
used to compute the wavefront reconstructor. 

We expanded on the standard AO controller design by: 1) 
incorporating the static nonlinear actuator response into an 
input linearization step and 2) implementing four different 
control algorithms on a AOSLO that use a MEMS DM [4]. 
Each algorithm optimizes a particular quadratic cost function 
in the design of the wavefront reconstructor and uses the 
standard integrator update law. We imaged two patients 
using each algorithm and quantified our findings using two 
different image quality metrics. 

II.  DESCRIPTION OF THE AOSLO 

The control loop operates over the optical path of the 
AOSLO shown in Fig. (1). The infrared beam is provide by 
an 840 nm superluminescent diode (SLD) (Superlum Ltd., 
Russia) and a photomultiplier tube (PMT) (Hamamatsu, 
Japan) is used for light detection. The MEMS DM (Boston 
Micromachines Corporation, USA) has a 12 by 12 actuator 
array minus the corner pixels making a total of 140 inputs. 
Based on measurements made using a phase shifting 
interferometer (PSI), a single actuator has a stroke range of 
about 1.2 µm. The WFS is a Shack-Hartmann type with a 
subaperture diameter of 400 µm and a maximum frame rate 
of about 25 Hz. For a 6 mm diameter pupil, the wavefront is 
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sampled at 213 locations. 
The infrared beam is coupled into the imaging path by a 

beam splitter and passes through a series of relay optics, 
DM, and scanning mirrors before being focused onto the 
retina. The reflected light from the retina returns along the 
same path reaching the same beam splitter. Most of the light 
passes through the beam splitter and is focused on the plane 
of the confocal pinhole. Light reaching the PMT is converted 
into a voltage signal that is digitized by a framegrabber to 
one 8-bit pixel value in the final image (512 by 512 pixels). 
Only a small area of the retina is illuminated at any point in 
time, so the pixel value depends on the amount of reflection 
from that area and the quality of the optics the light passes 
through before reaching the confocal pinhole. The PMT is 
synchronized with the scanning mirrors’ timing mechanism 
(HS and VS in Fig. (1)), so images are constructed pixel by 
pixel from raster scanning the retina. 

The intensity point spread function (PSF) is the 
autocorrelation of the single-pass PSF (two-dimensional 
impulse response of the imaging system). 

( , ) ( ', ') ( ' , ' ) ' 'dpH x y H x y H x x y y dx dy= + +∫∫  (1) 

Where Hdp and H are the double-pass and single-pass PSFs 
respectively. The double-pass PSF is imaged onto the plane 
of the circular confocal pinhole modeled here with a 
rectangle function: 

( )2 2( , )c x y rect x y D= +  (2) 

where D is pinhole diameter (50 to 80 µm). The PMT 
integrates light transmitted by the pinhole, so the value of a 
pixel is always proportional to the integrated intensity at that 
point in the raster scan [6]: 

( , ) ( , )pixel dpI c x y H x y dxdy∝ ∫∫  (3) 

Minimizing the residual wavefront error condenses the 
spatial distribution of the PSF so more light passes through 
the pinhole increasing the pixel value.  

 
Fig. 1. Schematic diagram of the AOSLO (PMT – photomultiplier tube, CP 
– confocal pinhole, BS – beam splitter, WFS – wavefront sensor, SLD – 
superluminescent diode, DM – deformable mirror, HS – horizontal scanner, 
VS – vertical scanner). 

III.  PROBLEM FORMULATION 

A. AO System Loop  

The wavefront from the eye is combined with the wavefront 
modulated by the DM surface profile to produce the residual 
wavefront seen at the WFS plane. According to the block 
diagram in Fig. (2), the error vector, which is the output of 
the WFS, is given by: 

1 1( ) ( ) ( ) ( )k z k z− −= +e H Gu H w  (4) 

where u(k) and w are the input vector and the eye’s wave 
aberrations respectively. The WFS does not measure the 
wavefront directly but acquires a digital image, using a CCD 
camera, where wavefront gradients are estimated via an 
image processing algorithm. For the purpose of this study, 
we assume this algorithm to be sufficiently accurate. The 
best correction is achieved when the residual wavefront is 
flat or the gradient is zero. Since the DM is nearly 
instantaneous [7], the only plant dynamics are due to the 
CCD integration time of the WFS. 

The DM and WFS in eq. (4) are modeled by the 
interaction matrix T mapping the input vector to the 
wavefront gradients corresponding to the DM surface: 

( ) ( 1)k k= −Ty Tu  (5) 

The one step delay is due to the integration time of the 
WFS. When combined with the gradients of the incoming 
wavefront from the eye, eq. (4) simplifies to: 

( ) ( 1)k k= − + we Tu y  (6)  

where yw is the vector of sampled gradients of the eye’s 
aberrated wavefront. The standard integrator law employed 
by most AO systems is: 

( ) ( 1) [ ( ) ( )]k k k k= − + +u u L e v  (7)  

where L  is the wavefront reconstructor matrix and v(k) is 
photon and CCD readout noise. From eq. (6) and eq. (7), we 
find the error update equation to be: 

( 1) [ ] ( ) ( )k k k+ = + +e I TL e TLv  (8) 

When noise appears to be dominating the measurement 
signal, the CCD camera’s integration time is heuristically 
adjusted in real-time by the operator to detect more light 
from the retina increasing signal to noise ratio. The tradeoff 
is a reduction in temporal bandwidth which appears to be 
less critical than the accuracy in estimating the error vector.  

 
Fig. 2. Block diagram of the closed loop AO system. I  is the 140 by 140 
identity matrix and L  is the wavefront reconstructor 
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B. Input linearization 

The system described by eq. (6) through eq. (8) assumes the 
mapping between the input and measurement vectors to be 
linear. When the input is voltage, this model only applies to 
linear DMs such as the piezoelectric DMs employed in 
several other systems [1, 3]. For MEMS, a linearization step 
is required to approximate an equivalent linear system. 

Deflection is achieved via electrostatic actuation, so a bias 
voltage needs be applied to the entire DM in order to actuate 
in both directions. The biased position should accommodate 
a maximum positive and negative single actuator deflection 
of equal magnitude, and the bias voltage was found using a 
PSI to be about 190 V. From this position, a single actuator 
is first released to 0 V and then driven incrementally to 265 
V while measuring the deflection every 20 V (except from 
260 V to 265 V). Deflections for six different actuators, 
averaged and normalized to range from -1 to 1, are shown in 
Fig. (3) with a second order polynomial fit. Defining the 
input vector as a set of normalized deflections better 
approximates the desired linear system model. The 
corresponding actuator voltages are found by solving for the 
roots of the fitted polynomial. 

 
Fig. 3. Normalized deflection versus voltage curve. Error bars denote one 
standard deviation for six different actuators.  

C. Interaction Matrix 

Identification of the interaction matrix T is done by 
introducing a nearly flat wavefront into the system with a 
model eye (lens and a diffuse scatterer positioned at the focal 
point) and measuring the static response of all the actuators 
[8]. The DM is set at the biased state and each actuator is 
pushed and pulled while measurements are made with the 

WFS. Letting it
+  denote the gradients measured when an 

input of 1 (0 V) is applied to the ith actuator and it
−  the 

gradient measured when -1 (265 V) is applied to the same 
actuator, the ith column of the interaction matrix is: 

( ) 2i it t+ −= −it  (9) 

and the interaction matrix is defined as: 

[ ]= 1 2 140T t t t…  (10) 

Since there are 213 subapertures and each subaperture 
estimates both x and y derivatives, the dimensions of T are 
426 by 140. The final model used is based the average of 
several generated interaction matrices. 

IV.  WAVEFRONT RECONSTRUCTION 

A. Standard Regularization 

A naive solution to the AO control problem seeks only to 
minimize the 2-norm of the error vector which results in a 
reconstructor that is the pseudo-inverse of the interaction 
matrix. However, the interaction matrix is ill-conditioned 
and the resultant reconstructor has been verified to be 
unstable in practice. A widely used technique for the 
inversion is the truncated singular value decomposition 
(SVD) where the smallest singular values of T are dropped. 
A more practical alternative to the SVD method is standard 
regularization where instead of dropping the smallest 
singular values, a constant regularization factor α is added to 
all the singular values [9]. This is equivalent to adding an 
input penalty to the standard cost function:  

2 22

2 2
( ) ( ) ( )J k k kα= +e u  (11) 

Minimizing J with respect to u(k) obtains the reconstructor: 
2 1( )α −= − +T TL T T I T  (12) 

Note that the design parameter α is the noise to signal ratio 
of the system.  

B. Local Waffle Penalty 

Waffle modes are created by driving adjacent actuators in 
opposite directions producing a voltage map resembling a 
checkerboard pattern. Patches of this pattern are often 
observed when SVD or standard regularization methods are 
used. Since they are not well sensed by the WFS, they can 
slowly build up in the control loop degrading retinal image 
quality in the process. 

The suppression of waffle modes is a spatial frequency 
shaping problem. The following finite impulse response 
(FIR) filter is used to model local waffle structure [9]: 

1 1

1 1

−
−

 

which is simply a first derivative operation. By implementing 
this convolution operation as a matrix multiplication applied 
to the input vector u(k), the cost function and its 
corresponding reconstructor can be derived as: 

2 2 2

2
( ) ( ) ( ) ( )J k k k kα η = + + 

T T Te u F F VV u  (13) 

2 2 1( )α η −= − + +T T T TL T T F F VV T  (14)  

where F is the convolution matrix form of the FIR filter for 
local waffle. Matrix V is designed to span the nullspace of F 
(required for 2 2 0α η+T TF F VV ≻ ). In principle, piston is 

the only mode that needs to be included in V but empirical 
observations of tip and tilt mode buildup during closed loop 
operation lead to their inclusion as well. The structures of 
piston, tip and tilt modes are shown in Fig. (4). 

C. Kolmogorov Penalty 

In astronomy, statistical models for noise and atmospheric 
turbulence are routinely used to optimize the design of the 
reconstructor matrix [9, 10]. Atmospheric turbulence is often 



  

modeled to follow Kolmogorov theory, but there is evidence 
that the spatial power spectrum of the eye’s wave aberrations 
also follow the classical Kolmogorov model [11]. Assuming 
the wavefront is proportional to the actuator commands, a 
sparse approximation for the inverse wavefront covariance 
matrix for the Kolmogorov model exists [12]: 

1−Λ ≈ T
ww C C  (15) 

where C is the convolution matrix form of the FIR filter for 
the discrete Laplacian operator: 

0 1 0

1 4 1

0 1 0

−  

Denoting the noise covariance matrix by Λvv , which we 

assume to be both white and constant in variance across the 
pupil, the cost function and its corresponding reconstructor 
become very similar to those for the previous design: 

1 1 2

2 2 2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

J k k k k k

k k k

η

α η

− − = Λ + Λ + 

 = + + 

T T T
vv ww

T T T

e e u VV u

e u C C VV u
 (16) 

2 2 1( )α η −= − + +T T T TL T T C C VV T  (17) 

The nullspace of C is spanned by piston, tip and tilt so these 
modes make up the columns of V. It is worth noting that this 
reconstructor under integral control is the minimum variance 
controller for nearly ideal imaging conditions [13]. 

 
Fig. 4. From left to right: piston, tip and tilt input modes. 

D. Zernike Polynomials 

Zernike polynomials, a set of two dimensional polynomials 
that are orthogonal over the unit circle, are almost 
exclusively used to quantify the eye’s wave aberrations [11, 
14, 15]. If a finite set of Zernike modes can accurately 
represent the eye’s aberrations, projecting the input vector 
onto a Zernike spanned subspace should improve system 
robustness during less-than-ideal experimental conditions. 
Furthermore, this method can allow for the correction of 
certain Zernike modes (i.e. defocus, astigmatism, etc.) while 
leaving all others intact which may be useful for certain 
applications such as vision performance testing. 

An input vector defined by the first N Zernike modes can 
be described by: 

1

0

N

i i
i

c Z
−

=

= =∑u Zc  (18) 

Where ci and Zi are the ith Zernike coefficient and mode 
vector (evaluated at each actuator point) respectively, and 
the matrices are defined as: 

[ ] 140
3 4 1

N
NZ Z Z ×

−= ∈ℜZ …  (19) 

[ ] 140
3 4 1Nc c c −= ∈ℜT

c …  (20) 

Z0 through Z2 correspond to piston, tip and tilt and are 
therefore not included in Z. N is 66 for the 10th order 
correction used in this study. Substituting eq. (18) into eq. 
(6) obtains the relationship between the error vector and the 
Zernike coefficient vector: 

( ) ( 1)k k= − + we TZc y  (21) 

The Zernike polynomial reconstructor minimizes the cost 
function with respect to the Zernike coefficient vector: 

2 22

2 2
( ) ( ) ( )J k k kα= +e c  (22) 

2 1]α −= − +T TL Z[(TZ) (TZ) I (TZ)  (23) 

 It is worth noting from an implementation standpoint that 
the Zernike polynomials lose their orthogonality when 
discretized and extrapolated over a nearly square actuator 
array. For this reason, matrix Z is ill-conditioned, so the 
Gram-Schmidt procedure is applied to the columns of Z 
before evaluating eq. (23). 

V. STABILITY  

Stability for the closed loop system described by eqs. (7) and 
(8) can be addressed by analyzing the behavior of the 
Lyapunov function: 

( ( 1)) ( 1) ( 1)

( )[ ] [ ] ( )

V k k k

k k

+ = + +
= + +

T

T T

e e e

e I TL I TL e
 (24) 

Letting W be the weighting matrix on u(k) (c(k) for the 
Zernike polynomial case), it can be shown that: 

( ( 1)) ( ) ( ) ( ) ( 2 ) ( )

( ( )) ( ) ( 2 ) ( )

V k k k k k

V k k k

+ = − +
⇒ ∆ = − +

T T T

T T T

e e e e L T T W Le

e e L T T W Le
 

Matrix W must be positive definite because the lack of 
weighting on input u(t) would create unbounded input 
magnitudes leading to actuator saturation. For the standard 
regularization and Zernike polynomial cases, W was 
proportional to identity so positive definiteness was trivial. 
For the other two designs, we manually identified specific 
modes that needed to be explicitly penalized in order to 
establish positive definiteness. It follows immediately that: 

2 0+TT T W ≻  (25) 
But since L is a weighted inverse of T, it cannot have full 

column rank ( 140 426×∈ℜL ). Therefore, 

( 2 ) 0

( ( )) 0V k

+ ≥
⇒ ∆ ≤

T TL T T W L

e
 (26)  

so the system is stable in the sense of Lyapunov regardless of 
which reconstructor is used. However, this is enough to 
guarantee that the control signal and wavefront error signals 
do not go unbounded. 
 A more thorough stability analysis would require accurate 
modeling of electrostatic actuation coupled with the 
membrane deformation properties of the DM. A 
mathematical model of the type of MEMS device used in this 



  

study has been assessed [16]. It was not adopted for this 
study because the model’s predicted membrane response did 
not match the actual membrane response of our MEMS 
device at high voltages. 

VI.  RESULTS 

The imaging sessions were kept short (~20 seconds) and 
administered minutes apart to minimize subject fatigue 
which may bias the comparisons. The center of the raster 
scan was placed approximately 0.4 degrees outside of the 
subjects preferred fixation point. The scanning was 
performed over approximately 0.9 degrees retinal 
eccentricity which corresponds to about 0.265 mm for 
subject 1 and 0.279 mm for subject 2 since eye sizes differ 
among individuals. The two image quality metrics used to 
quantify system performance are the root-mean-square 
(RMS) wavefront error and the mean pixel value of the 
retinal image. The RMS wavefront error was computed in 
real-time and logged for each experiment. Mean pixel values 
were computed offline. 

The sampled wavefront gradients from output vector e(k) 
were integrated to estimate the two-dimensional wavefront 
maps used to compute the RMS wavefront error [17]. 
According to Fig. (5), the RMS error converged in all four 
cases for both subjects and remained near the best corrected 
state over the entire imaging session. However, performance 
traces based on the mean pixel value of each acquire frame, 
shown in Fig. (6), displayed a much greater level of 
diversity. The retinal image pixel values are more direct 
indicators of image quality since certain aberration profiles 
from either the DM or the eye can lie beyond the sampling 
capabilities of the WFS. 

The temporal mean and standard deviation for both image 
quality metrics during closed loop operation are tabulated in 
Fig. (7). The results suggest that the Kolmogorov penalty 
reconstructor modeled the power spectrum of the eye’s wave 
aberrations most accurately out of the four tested 
reconstructors. The Zernike polynomial reconstructor 
performed the worst overall for the two subjects in this 
study, but we have experienced imaging conditions where 
measurements were poor, and only the Zernike polynomial 
reconstructor was robust enough to make an effective 
correction. 

A set of acquired cone mosaic images are shown in Fig. 
(8). They correspond to the data in Fig. (5) and Fig. (6) for 
subject 2, stabilized and frame averaged (100 manually 
selected frames) to improve contrast. The round spots with 
varying intensities packed in a nearly hexagonal array are 
cone photoreceptors. For this particular subject, these 
features are noticeably more blurry in images acquired using 
the Zernike polynomials and the local waffle penalty 
reconstructors, which is consistent with the observed mean 
pixel value traces. Cones become much smaller and more 
tightly packed at the fovea center [18], and further system 
refinements are needed to reliably resolve them. 

 
Fig. 5. Performance based on the estimated RMS of the residual wavefront 
error for subject 1 (left) and subject 2 (right). SR – standard regularization; 
LWP – local waffle penalty; KP – Kolmogorov penalty; ZP – Zernike 
polynomials 
 

 
Fig. 6. Performance based on the mean pixel value of the retinal images 
 

RMS error (nm) Mean pixel value  

Subject 1 Subject 2 Subject 1 Subject 2 
SR 76 ± 16 63 ± 11 50.92 ± 1.58 82.12 ± 4.28 
LWP 76 ± 11 57 ± 8 53.60 ± 1.50 75.34 ± 4.92 
KP 65 ± 11 59 ± 16 53.85 ± 1.28 90.32 ± 4.33 
ZP 94 ± 14 62 ± 5 48.36 ± 3.42 76.74 ± 2.40 

Fig. 7. Temporal mean and standard deviation of the RMS wavefront error 
and the mean pixel value beginning from about two seconds after closing 
the control loop 

VII.  CONCLUSION 

The work presented in this paper marks the first step to 
improving the resolution of a vision science AO imaging 
systems by using more advanced controllers; an important 
design component that is often overlooked based on relevant 
literature. We have addressed the AO control problem 
focusing primarily on implementation and testing and 
demonstrated that sharper images of the human cone mosaic 
can be obtained by improving the control system. For 
countering the static nonlinear properties of the MEMS 
device, we have added an input linearization step based on 
deflection measurements made using a PSI. A critical design 
component of the integrator type controller for AO systems 
is the wavefront reconstructor. Four reconstructors based on 
the optimization of quadratic cost functions were described 
and tested on two real eyes. In addition to the standard 
regularization method, we considered two designs using 
spatial frequency shaped DM modes and also a modal 
reconstructor based on a finite set of Zernike polynomials [9, 
12, 19]. 

Two quantitative image quality metrics were used to 
evaluate the performance of the control algorithms: 1) RMS 
residual wavefront error and the 2) mean pixel value of the 
acquired retinal image. Even though the four controllers 
performed similarly according to the computed RMS 



  

wavefront error, they did not all produce retinal images of 
similar quality. The mean pixel value is a more sensitive 
indicator of retinal image quality because it is directly related 
to the system’s PSF. The Kolmogorov penalty reconstructor 
performed the best according to the mean pixel value 
suggesting that it makes a reasonable approximation of the 
statistics of the eye’s wave aberrations. Even though the 
Zernike polynomial reconstructor did not outperform the 
other methods in most cases, it can be a practical alternative 
during less than ideal imaging conditions. 
 

 
Fig. 8. Examples of AOSLO images from subject 2 acquired with each of 
the four control algorithms (top left: SR, top right: LWP, bottom left: KP 
and bottom right: ZP). Each image subtends from approximately 0 (fovea 
center) to 0.8 degrees (0.25 mm) eccentricity. 
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