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Automated identification of cone photoreceptors
in adaptive optics retinal images
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In making noninvasive measurements of the human cone mosaic, the task of labeling each individual cone is
unavoidable. Manual labeling is a time-consuming process, setting the motivation for the development of an
automated method. An automated algorithm for labeling cones in adaptive optics (AO) retinal images is imple-
mented and tested on real data. The optical fiber properties of cones aided the design of the algorithm. Out of
2153 manually labeled cones from six different images, the automated method correctly identified 94.1% of
them. The agreement between the automated and the manual labeling methods varied from 92.7% to 96.2%
across the six images. Results between the two methods disagreed for 1.2% to 9.1% of the cones. Voronoi analy-
sis of large montages of AO retinal images confirmed the general hexagonal-packing structure of retinal cones
as well as the general cone density variability across portions of the retina. The consistency of our measure-
ments demonstrates the reliability and practicality of having an automated solution to this problem. © 2007
Optical Society of America

OCIS codes: 100.5010, 010.1080, 330.5310.
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. INTRODUCTION
hysical limitations and consequences due to the variabil-

ty of the packing arrangement of retinal cones were first
eported by Yellott1 in 1983. Since then, the packing
tructure of retinal cones has been studied both anatomi-
ally and psychophysically.2–6 The advent of retinal imag-
ng systems with adaptive optics (AO) has made it pos-
ible to image the living human retina at the microscopic
cale.7 Now that noninvasive studies of the anatomy and
hysiology of human cones are possible,8,9 it is reasonable
o expect future studies to be done on a much greater
cale. Automated methods for data analysis have found
pplication in many medical and scientific fields and have
he potential to become a useful tool in the field of retinal
maging. The quantity of data included in any study is of
reat importance. Reliable automated routines are natu-
ally preferred when large quantities of data need to be
nalyzed. We want to facilitate the process of determining
one density and cone packing arrangement in AO images
o encourage the inclusion of larger data sets in future
tudies. Manually labeling cones in an image is usually
eliable, but it becomes an impractical solution when mul-
iple images are involved. In this paper, we automate the
one labeling process with an algorithm implemented in
ATLAB (Mathworks, Inc., Natick, Massachusetts) and

unctions from the MATLAB Image Processing Toolbox
IPT). Code can be accessed from our research group’s

eb page.10 We demonstrate the algorithm’s effectiveness
n analyzing actual AO retinal images. Algorithm perfor-

ance is assessed by comparisons with manually labeled
esults for six different AO retinal images.

Studies that have addressed the sampling limitations
f retinal cones usually model the cone mosaic as a hex-
gonal array of sampling points.2,6,11 Maximum cone den-
ity is achieved with this packing arrangement. It is
1084-7529/07/051358-6/$15.00 © 2
ikely that this is the main reason why retinal cones tend
o develop into a hexagonal array in areas where few or
o rods are present. A hexagonal sampling grid is the op-
imal solution for most signal processing applications.12

evertheless, the sampling performance of cones is more
ommonly associated with cone density rather than ar-
angement geometry. Knowing that the packing arrange-
ent of cones affects the sampling properties of the

etina, why are cones hexagonally arranged only in local-
zed regions and what advantages do such variations in
acking arrangement offer?3,5,6,11 Furthermore, analyses
f cones across a variety of eccentricities show that their
acking arrangement is also highly variable. Using our
lgorithm, we analyzed the cones from seven montages
onstructed from images acquired at various eccentrici-
ies using AO. The computed cone locations are then used
o generate density contour maps and to make quantified
easurements of their packing structure. The consistency

f our results indicates the reliability of an automated
ethod for analyzing AO images. Our analysis demon-

trates how the process of extracting quantitative infor-
ation about the density and packing arrangement of

ones from images of living retinas can be accomplished
fficiently.

. METHOD
mage formation for an optical system can be described by
he convolution of the object with the system’s impulse re-
ponse or point-spread function (PSF):

I��x1,x2� = I�x1,x2� � ��x1,x2�, �1�

here I��x1 ,x2� is the observed image, I�x1 ,x2� is the ac-
ual cone mosaic under observation � is the convolution
perator, and ��x ,x � is the PSF. AO corrects the aberra-
1 2
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ions of the eye to minimize the distribution of ��x1 ,x2�,
ut residual wavefront error after correction is still often
oo high for us to see cones near or at the fovea. Image
estoration techniques such as deconvolution can enhance
he appearance of the image even further,13 but if retinal
ones are not optically resolved, no method can reliably
dentify them. Under the condition that the cones under
bservation are optically resolvable, we show that it is
nly necessary to understand the role of noise in the cone
dentification process. The observed image I��x1 ,x2� is
onverted by the detector into a finite two-dimensional se-
uence:

I��n1,n2� = I��x1T1,x2T2� + ��n1,n2�, �2�

here T1 and T2 are the horizontal and vertical sampling
eriods determined by the finite pixel size of the detector
nd ��n1 ,n2� is a generalized noise term. The power spec-
rum of an AO retinal image shown in Fig. 1 contains an
pproximate hexagonal band region produced by the
egular arrangement of cones. Signals that do not corre-
pond to cones, which may originate either from noise in
he detection channel or from other features in the retina,
re effectively noise. Filtering and morphological image
rocessing are used to isolate signals corresponding only
o cone photoreceptors.14,15

The intensity of light incident on each pixel of the de-
ector is encoded as integral values that make up the two-
imensional sequence I��n1 ,n2�. This sequence can be
iewed as a surface topography of intensity counts over a
iscrete plane. Cones are single-mode optical fibers ori-
nted toward the direction of the pupil center with very
mall disarray.9,16 As a result, reflected light from these
bers can be considered as an array of point sources at
he retinal plane. Therefore, the light distributions ob-
erved in an AO image are PSFs whose peaks correspond
o the actual cone locations. Surface topography features

ig. 1. (Color online) Power spectrum of an AO retinal image
enhanced by log scale) generated using the fast Fourier trans-
orm. The shape and size of the band region indicate the hexago-
al arrangement and sampling limits of the cones in the image.
he periodicity of the tightest packed cones is about
45 cycles per degree (cpd).
hat correspond to these PSF peaks are points of local
axima. When cones are optically resolved, we can deter-
ine the locations of all the cones by identifying all local
axima in the original image. In an image sampled by an

rray of finite detector elements, a local maximum is de-
ned to be any pixel whose value exceeds each of its
eighboring pixels. IPT function imregionalmax effec-
ively accomplishes this task. However, direct application
o the observed sequence I��n1 ,n2� produces a result that
xceeds the actual number of cones in the image. These
veridentifications are primarily due to the presence of
igh-frequency noise and can be greatly reduced by apply-

ng the appropriate low-pass filter. A low-pass finite-
mpulse-response (FIR) filter is designed for this purpose
nd applied to I��n1 ,n2� prior to further image processing:

f�n1,n2� = h�n1,n2� � I��n1,n2�, �3�

here h�n1 ,n2� is the impulse response (15 by 15 pixels).
ilter parameters are selected based on the field size of

he system and the estimated minimum cone spacing.
he minimum cone spacing in the central fovea is ap-
roximately 2 �m.4 Using a conversion factor of
00 �m/deg eccentricity, the frequencies of retinal cones
hould range from nearly zero to approximately
45 cycles per degree (cpd). The FIR filter h�n1 ,n2� is de-
igned to implement the desired ideal low-pass filter that
asses only spatial frequencies within 145 cpd. The dens-
st cones that can be imaged using AO reside within
45 cpd, so filter parameters can be adjusted accordingly.
any FIR filter types exist and can be rather extensive.
he most popular filter designs can be found in signal
rocessing texts,17,18 so we will not state further details
or this step.

There is more than one method to implement the con-
olution operation in Eq. (3), but an appropriate method
ust provide a justifiable solution for computing the pixel

alues toward the boundary of f�n1 ,n2�. Suppose the se-
uences I��n1 ,n2� and h�n1 ,n2� have N�N and M�M
upport, respectively. The convolution of I��n1 ,n2� with
�n1 ,n2� initially requires extending the bounds of
��n1 ,n2� to achieve M+N−1�M+N−1 support. This is
ypically done by zero padding I��n1 ,n2�, which introduces
iscontinuities along its boundaries. The resulting
�n1 ,n2� would contain unnecessary blurring and noise
ear the boundaries. A second method is to take the dis-
rete Fourier transform (DFT) of both I��n1 ,n2� and
�n1 ,n2� and multiply them in frequency space. The re-
ultant f�n1 ,n2� is then restored by taking the inverse
FT. Due to the nonperiodicity of I��n1 ,n2�, taking the
FT in this manner introduces aliasing along the bound-
ries of f�n1 ,n2�. A practical solution to this problem could
e to remove the corrupted pixels by applying a window:

f�n1,n2� = W�n1,n2��h�n1,n2� � I��n1,n2��, �4�

here W�n1 ,n2� is the windowing function. The resultant
equence f�n1 ,n2� is reduced to have only N−M�N−M
upport. A reliable alternative exists to avoid this loss in
nalyzable data. We can extend the bounds of I��n1 ,n2�
ith values equal to its nearest border values rather than
ith zeros. As a result, N�N support of the input se-
uence I �n ,n � is preserved along with continuity at its
� 1 2
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oundaries. IPT functions fwind2 and imfilter are useful
or the implementation of these operations.

IPT function imregionalmax generates a binary se-
uence, as shown in Fig. 2(a), where each nonzero pixel
orresponds to a local maximum. Missidentifications ap-
ear as multiple nonzero pixels that lie within a vicinity
hat is not physically realizable by the same number of
ones. These pixels are grouped into a single object using
orphological dilation (IPT function imdilate). As shown

n Fig. 2(b), this operation translates a binary disk across
he domain of the binary sequence, replacing each non-
ero element with the disk similar to the convolution. The
isk is set at 2 �m in diameter (i.e., the minimum pos-
ible cone spacing). The final cone locations, shown in Fig.
(c), are determined by computing the center of mass of
ach object after dilation.

ig. 2. Output of IPT function imregionalmax is a (a) binary se-
uence whose values are nonzero at all identified local maxima
n the input sequence. (b) This sequence is dilated with a disk-
haped structuring element, and (c) cone locations are computed
y computing the center of mass of each object in the sequence
fter dilation.

ig. 3. (Color online) Every marker in these six grayscale im-
ges is manually placed by the authors. Each image is 8 bits and
28�128 pixels, and each marker is accurate to the nearest
ixel.
We took six retinal images, all with 128�128 pixel sup-
ort, and labeled them manually as shown in Fig. 3. This
iverse set of images varies considerably in cone density,
ontrast, and, in some cases, biological structure. Com-
arisons are made with automated results on the same
ata set to assess the agreement between the two meth-
ds. Comparisons are also made between outcomes from
ve experienced human observers for two of the six im-
ges. An agreement is made when a pair of corresponding
ones is located within 2 �m of each other. This value was
hosen because cone diameters at the observed eccentrici-
ies are at least 4 �m. Identified cones that do not satisfy
his criterion are defined as disagreements. The level of
greement between the labeling methods is quantified by
omputing the mean displacement along both the horizon-
al and the vertical directions and is reported in Table 2.
he cone packing arrangement is analyzed graphically
sing Voronoi diagrams.19 Voronoi analyses for the two
elected images are done on the results from the five hu-
an observers and the algorithm.
The image montages analyzed are acquired from one
onkey and six human retinas. The images were ac-

uired by both the flood-illuminated AO system at the
niversity of Rochester and an AO scanning laser oph-

halmoscope (SLO) (see Table 1).7,20 Cone density is com-
uted at each cone by counting the number of cones that
ie within a defined circular sampling window (approxi-

ate radius of 0.07 deg or 20 �m). Cones whose corre-
ponding sampling window extends beyond the bounds of
he image are excluded. We generated contour maps of
one density values to observe the variability of cone den-
ity across each montage. Linear interpolation is used to
ll the spaces between cones with the estimated density
alues. Since packing structure tends to vary greatly
cross the retina, each montage is divided into 0.125 deg
ections, and Voronoi analysis is done on each individual
ection. Voronoi regions that extend beyond the bounds of
ach image section are excluded from all analysis.

. RESULTS
he number of cones identified in every image of Fig. 3 is
eported in Table 2. For each image, the algorithm found
pproximately equal numbers of cones as the authors did.
hen analyzing the packing arrangement of retinal

ones, we are more concerned with the agreement be-
ween the automated and the manual labeling methods.
s outlined in Table 2, a 93% to 96% agreement between

he two methods is achieved, and the physical locations of

Table 1. Sources for Cone Photoreceptor Imagesa

Image System Eccentricity (deg)

1 Monkey AO flood illuminated 1.10 to 1.86
2 Subject 1 AO flood illuminated 0.30 to 1.68
3 Subject 2 AO SLO 0.60 to 2.60
4 Subject 3 AO SLO 1.15 to 4.27
5 Subject 4 AO SLO 1.35 to 4.97
6 Subject 5 AO SLO 0.74 to 2.61
7 Subject 6 AO SLO 1.55 to 5.06

aRefs. 7, 20, 21.
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ach corresponding cone pair deviated within 0.52 �m
rom each other. Disagreements between the two meth-
ds, ranging from 1% to 9%, are due to human observer
rrors and/or unrelated signals that are not removed dur-
ng the preprocessing step of the algorithm. The highest
ercentages of disagreement are seen for images (a) and
c). The cone mosaic in (a) clearly has some unusual
tructures,22 and the cones present in (c) are borderline
esolvable in many areas. In contrast to (a) and (c), other
mages resulted in better agreement between the two

ethods. Agreement between outcomes from five experi-
nced human observers spanned from 74.1% to 90.5% for
ig. 3(c) and 92.1% to 96.8% for Fig. 3(d). Analysis of the
hape of each Voronoi region allows one to predict the spa-
ial sampling capabilities offered by the observed cone
osaic. Voronoi regions are divided into hexagonal (light

ray) and nonhexagonal (dark gray) categories as seen in
igs. 4 and 5. Voronoi diagrams appear to be rather sen-
itive to modest differences in cone labeling results.
oronoi diagrams of Fig. 4 are of the same image labeled
y five human observers and the automated algorithm.
eature variability in these diagrams indicates that un-
ertainty due to questionable image quality and/or inad-
quate experience of the observer is not a negligible fac-
or. Among the observers, the percentage of hexagonal
oronoi regions spanned from 39.4% to 52.5% for Fig. 4(c)
nd 55.36% to 62.71% for Fig. 4(d). The corresponding re-
ults for the automated method were at 40.8% and 57.7%
or Figs. 4(c) and 4(d), respectively. These observations in-
icate that decisions made by human observers can sig-
ificantly influence the outcome of a packing analysis and
hat the consistency of an automated method may actu-
lly be more appropriate for certain images.

Table 2. Performance Comparison b

Image
Number
of Cones

% Agreement
(%)

(a) 274 95.4
(b) 354 94.1
(c) 301 92.7
(d) 315 96.2
(e) 557 93.5
(f) 352 93.8

ig. 5. Montage image of the monkey retina acquired by the A
ith the proposed algorithm.
etween Manual and Automated Methods

% Disagreement
(%) �x ��m� �y ��m�

9.1 0.06±0.48 −0.07±0.43
1.2 0.09±0.42 −0.06±0.37
8.2 −0.02±0.49 −0.04±0.41
5.6 0.04±0.47 −0.01±0.52
6.3 0.08±0.44 0.03±0.41
5.4 0.06±0.38 −0.05±0.42
ig. 4. (Color online) Voronoi diagrams corresponding to the
osaic of Fig. 3(d) computed from cone locations acquired by (a)

he automated method and (b)–(f) the five experienced human
O flood-illuminated system at the University of Rochester and labeled
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We computed cone densities and Voronois using the
ethods described above for seven large montages with
ell-resolved cones. The montage acquired from the mon-
ey is shown in Fig. 5. The Voronoi diagram for this cone
osaic and its corresponding cone density contour map

re given in Figs. 6 and 7. Voronoi diagrams and cone
ensity plots illustrate the variability in cone packing ar-
angement and density across the retina. Voronoi regions
radually increase in size at higher eccentricities, which
ignifies how cone density decreases monotonically as ec-
entricity increases. This can also be seen from the cone

ig. 6. Voronoi diagrams generated for the montage given in F
ions are shaded in light gray.

ig. 7. (Color online) Topography map of retinal cone density for
he montage given in Fig. 4.

ig. 8. Percentages of hexagonal Voronoi regions plotted over
ccentricity for all seven montages analyzed in this study.
ensity contour map. The retinal montages cover eccen-
ricities from 0.17 to 5.00 deg. Cone density values within
his range varied from approximately
040 to 6500 cones/deg2. This converts to approximately
2,300 to 72,200 cones/mm2, which agrees with the
rends reported by Curcio et al.4 In a large montage, it is
ossible to identify localized patches in the mosaic where
here is prominent hexagonal-packing structure. The per-
entages of hexagonal regions across 0.125 deg sections
re plotted in Fig. 8. In general, at least 40% to 50% of
etinal cones are hexagonally arranged, but more than
0% hexagonal packing may appear in certain localized
egions. In a study done by Curcio and Sloan,3 an analysis
one on one prepared human retina suggested that cones
ay be more hexagonally arranged near the edge of the

ovea (between 0.20 and 0.25 deg eccentricity) rather than
t the fovea center. This suggests that, even though cones
re more densely packed toward the foveal center, they do
ot necessarily become more hexagonally arranged. This
endency may also be present in our data for the monkey
71% at 1.17 deg and 46% at 0.17 deg) and subject 1 (60%
t 0.50 deg and 42% at 0.37 deg) as shown in Fig. 8. How-
ver, better-quality images of the foveal center and its im-
ediate periphery are needed to confirm this hypothesis.

. DISCUSSION
he abundance of hexagonal Voronoi regions reveals that
any localized patches of hexagonally arranged cones ap-

ear throughout each mosaic. Hexagonal arrays have in-
eresting sampling properties. Natural scenes generally
ave circular symmetric power spectrums, and hexagonal
ampling arrays provide the most efficient solution for
ampling such signals.12 The Nyquist limit for a normal
exagonal array is ��3s�−1 along one axis and �2s�−1 along
he other, where s is the center-to-center spacing of cones.
his means that a computation savings of approximately
3% over standard rectangular sampling is achieved. Our
nalysis indicated that nonhexagonal Voronois can make
p less than 30% of a mosaic region near the fovea, but
his percentage increases sharply to 50% to 60% at
reater eccentricities. Cones at higher eccentricities are
ore randomly arranged and offer the visual system

ome protection from perceiving an aliased signal.1,5,23

arlier work by Yellott1 showed from data taken from the
eripheral retina of a monkey that the power spectrum

t the eccentricities specified above each diagram. Hexagonal re-
ig. 4 a
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esembled that of a Poisson (random) distribution. Alias-
ng does not occur at the fovea because the Nyquist limit,
ue to higher cone densities, extends beyond frequencies
hat can pass through the optics of the eye. The cone
acking arrangement decreases at higher eccentricities,
o, even though cone densities are lower, aliasing is gen-
rally replaced by noise. We hope that the methods pre-
ented in this paper will encourage further quantitative
nalysis on the packing arrangement of rods and cones.
uch analyses are essential for understanding how photo-
eceptors migrate into their permanent arrangement
tructure during development.

Cones are optical fibers oriented in the direction of the
upil center.9 Reflected light emitted from the cone aper-
ures are effectively point sources that generate an array
f PSFs in AO images. For this reason, it is important to
nderstand that not all PSFs correspond to cones in an
O image with questionable quality. When AO fails to re-
olve individual cones or when interference is present in
he system, a single PSF-like intensity distribution may
orrespond to multiple cones or noise. When individual
ones are resolvable, the cone labeling process can be
one reliably using the proposed algorithm. This is dem-
nstrated by evaluating the algorithm performance on a
iverse set of AO images and comparing the outcomes to
anually labeled results. Comparisons between the auto-
ated and the manual labeling methods resulted in simi-

ar outcomes. The extent to which the two methods as
ell as different human observers agreed is influenced by

he appearance or quality of the analyzed image. This is
specially true when performing Voronoi analyses, so
acking arrangement studies should be done only with
uality images where cones are well resolved. A low-
uality image or an image with unique features resulted
n lower levels of agreement between manual and auto-

ated methods. Equivalent comparisons between several
xperienced human observers often resulted in greater
utcome variability, suggesting that a consistent auto-
ated solution may be more reliable in many cases.
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