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Abstract

We present a method for optimization-based recovery of
eye motion from rolling shutter video of the retina. Our ap-
proach formulates eye tracking as an optimization problem
that jointly estimates the retina’s motion and appearance
using convex optimization and a constrained version of gra-
dient descent. By incorporating the rolling shutter imag-
ing model into the formulation of our joint optimization, we
achieve state-of-the-art accuracy both offline and in real-
time. We apply our method to retina video captured with an
adaptive optics scanning laser ophthalmoscope (AOSLO),
demonstrating eye tracking at 1 kHz with accuracies be-
low one arcminute—over an order of magnitude higher than
conventional eye tracking systems.

1. Introduction
Eye tracking is the process of determining the eye’s

gaze direction over time, often using specialized optics
and software. In the real-time setting, precise tracking
is hindered by the constant and often ballistic motion of
the eye, consisting of drift, microsaccades, and saccades
[22, 25]. Studying these ballistic movements in the of-
fline setting requires accurate, high-frequency motion es-
timation algorithms, which are useful in ophthalmology
and biomedicine. A precise model of these high-frequency
movements is also relevant to computer vision because it
could inform the development of new algorithms that aim
to replicate cognitive tasks such as object recognition and
scene understanding; for instance, microsaccades have been
linked to complex visual tasks in humans like reading [11].
Unfortunately, most eye tracking systems are only accurate
to 0.5 degrees of visual angle, making the exact dynamics
of microsaccades and saccades an open question.

Eye trackers that infer gaze direction using measure-
ments from the eye’s cornea, pupil and lens have both ac-
curacy and precision limitations due to their reliance on in-
dividual subjective calibration procedures, and from gaze
estimation errors caused by changes in pupil size or wobble

of the crystalline lens.
In principle, eye tracking approaches based on imaging

the retina can overcome these limits. Further, they add in-
formation by linking gaze with retinal structures. The adap-
tive optics scanning laser ophthalmoscope (AOSLO) is a
device that images the retina at high resolution, with cur-
rent systems capturing 30 FPS rolling shutter video that can
resolve individual photoreceptor cells.

The AOSLO has mainly been applied in ophthalmology
settings for recording videos of the retina, and existing ap-
proaches demonstrate real-time eye tracking speeds of 1
kHz [35]. These methods register strips of incoming reti-
nal video against a pre-computed retina map, which in turn
is generated by stabilizing a previously-recorded AOSLO
video using offline eye tracking algorithms. Unfortunately,
these offline techniques often produce distorted maps be-
cause they fail to completely correct for the entanglement
of eye motion with the rolling shutter capture process.

In this paper, we introduce a principled approach to dis-
entangling eye motion from the rolling shutter video. We
formulate and solve a holistic optimization problem that si-
multaneously computes retina motion and a map of retina
appearance that faithfully explain the recorded AOSLO
video. Jointly solving for this motion and retina map has
not been attempted before because it is an under-determined
problem; much like in visual SLAM (Simultaneous Local-
ization and Mapping [33]), there is an inherent ambiguity
between the moving location of the retina/eye and the un-
derlying map of the retina’s appearance. Our method, R-
SLAM (for retina-based SLAM) consists of two stages (see
Figure 1): first, we use convex optimization to compute an
initial estimate of the motion. Formulating this initial step
in a convex fashion offers guarantees about the existence
and uniqueness of the optimal motion solution, as well as
efficient algorithms to find this solution. Second, we per-
form joint refinement of the retina map and initial motion
estimate, aiming to reconstruct the input video using gradi-
ent descent. Our contributions include:

• Formulation of eye-tracking from rolling-shutter retina
video as an optimization problem.
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Figure 1: Our offline tracking algorithm’s pipeline. R-SLAM receives as input distorted video of the retina, then proceeds to
compute an initial motion estimate using convex optimization. We then use constrained gradient descent to jointly optimize
the retina’s motion and map, the latter of which can be used for real-time tracking.

• Convex initialization and gradient-based refinement of
retina motion and retina map, in an offline algorithm
that results in 3x less tracking error than prior work.

• Real-time eye tracking with 2x less error than prior
methods, using the high-accuracy retina maps pro-
duced in the offline process and applying robust
statistics to fast tracking based on normalized cross-
correlation.

2. Related Work
2.1. Conventional Eye Tracking Systems

Eye trackers that infer gaze from the pupil position or
the pupil position relative to the corneal reflection are inex-
pensive, compact, and convenient, but are typically accurate
to only 0.5 degrees of visual angle. Most modern systems
perform real-time pupil fitting and gaze tracking in a simul-
taneous fashion [26]. For instance, Tobii is a commercial
eye tracker that estimates eye position and gaze direction by
shining near-infrared light onto the pupil, with accuracies
between 30-66 arcminutes [4, 17]. Similarly, Pupil Labs of-
fers a video-based eye tracker that uses computer vision to
fit a 3D model of the eye for tracking, accurate to about 1
degree (60 arcminutes) of visual angle [1, 2]. Both Tobii
and Pupil Labs operate at frequencies under 250 Hz [4, 2],
precluding the precise tracking of ballistic eye movements
like saccades and microsaccades. The EyeLink achieves
real-time tracking speeds of 2000 Hz using a video-based
system [3]. Recent work by Angelopoulos et al. [6] beats
the EyeLink by pushing real-time tracking speeds to 10,000
Hz using near-eye event cameras. However, as with Pupil
and Tobii, both the EyeLink and the work of Angelopou-
los et al. offer tracking accuracies of 27 arcminutes at best
[6, 16].

Dual Purkinje image (DPI) trackers track eye movements
by comparing the relative location of the corneal reflex with

a reflection from the back surface of the crystalline lens
[13]. DPI systems are more precise than pupil trackers, but
are still limited in accuracy owing to the need for individ-
ual subjective calibration. It has been reported that itera-
tive subjective calibration procedures can be implemented
to generate DPI accuracies of around 2 arcminutes [28],
but no amount of calibration can prevent artifacts from lens
movement inside the eye [10, 14].

Other eye trackers include electrooculography [24], scle-
ral search coils [29] and optical lever methods in which the
deflection of a laser light is measured from a small mir-
ror that is fixed to the eye via a specialized contact lens
[31]. Because of the invasiveness and infrequent use of
these methods, they will not be discussed further or com-
pared with the R-SLAM approach.

2.2. AOSLO-based Eye Tracking

The AOSLO offers promising hardware for high-
frequency eye tracking with subarcminute accuracy, but cur-
rent software solutions for processing AOSLO video fail
to completely disentangle the effect of rolling shutter from
motion of the eye, leaving artifacts in motion estimates and
residual distortions in estimated retina maps. Full details
of AOSLO are provided by Roorda et al. [30], but we pro-
vide a brief overview here. The AOSLO records an image
by measuring the scattered light from a focused spot on the
retina as it sweeps in a raster scan. AOSLOs are capable
of recording a live video of the human retina at a cellular
resolution and high sampling density (typically 9.5 pixels
per arcminute). Since the laser scans line-by-line from the
top to bottom of each frame, the bottom portions of video
frames are recorded later in time than the top portions. This
vertical sweep combined with the eye’s motion introduces
rolling shutter distortion in the video frames [12, 32].

There are several techniques that attempt to dewarp
rolling shutter AOSLO video. Stevenson et al. [32] per-
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form offline tracking by constructing a reference frame from
a registered set of seed frames from a video sequence and
subsequently registering all video frames to that reference,
strip-wise, to form a larger retina map. Azimipour et al.
[7] solve for motion within a single frame by registering the
strips in the frame against the other frames and computing
a dewarping bias. Bedggood et al. [9] use a similar method
to [7], except Bedggood et al. solve for the eye’s motion in
the whole video by registering all the other frames against
the single dewarped frame in a strip-based fashion.

These methods are moderately effective. Stevenson et
al.’s approach reduces, but does not eliminate, artifacts from
distortions in the reference frame. The outcome is that the
apparent motion that gives rise to the distortion in the refer-
ence frame appears in the motion trace from each frame in
the video. Empirically, these periodic artifacts manifest as
spikes in the power spectrum at the frame rate and higher
harmonics (30 Hz, 60 Hz, 90 Hz, and so on) [10]. We
make use of this phenomenon in analyzing tracking error
in the absence of ground truth motion data in Section 4.2.
Azimipour et al. and Bedggood et al. effectively minimize
these artifacts, but their algorithms are not suited to stabilize
the movie over the entire extent of the field of view, gen-
erate high fidelity images over the largest possible extent,
or generate the most accurate and continuous eye motion
traces. Unlike R-SLAM, these methods rely on registering
motion against one or more seed frames that may contain
rolling shutter artifacts themselves, and attempts to dewarp
the seed frames fail to utilize dense interframe correspon-
dence information throughout the entire video.

2.3. Rolling Shutter Correction for Frame Dewarp-
ing

A variety of algorithms exist to correct for rolling shutter,
but most of them assume 3D world geometry [21, 36, 37].
Baker et al. [8] use the same 2D translational motion as-
sumption as us, and their method is similar to our con-
vex optimization step. Their algorithm consists of feature
tracking via optical flow followed by linear programming
to solve for a camera motion trace that is consistent with
the tracked features. Our method is different from [8] in
that we track features across the whole video instead of just
neighboring frames in order to enable loop closure, which
is important for the mapping aspect of our algorithm. Sec-
ondly, we use an l2 loss to impose a Brownian random walk
prior on the eye’s motion, whereas [8] uses an l1 loss to
remove outliers from the set of tracked features (which we
handle using RANSAC [20]). Thirdly, we refine the initial
output of the convex step using gradient-based optimization
over a different objective function.

3. Mathematical Background and System
Overview

Our system directly models the AOSLO’s video capture
process to simultaneously optimize the retina’s motion and
appearance from an input recording. This allows arcminute
accurate offline tracking and distortion-free map generation
that subsequently enables high-quality real-time tracking.

We define the problem mathematically as follows:
We define the retina map as a 2D rigid image, with scalar

intensity given by R(x, y), where (x, y) are spatial coordi-
nates on the retina. All spatial units are defined such that
the AOSLO’s output has unit width and height.

We define the retina’s motion as a function of time, with
the retina’s 2D position given by M(t) = [X(t), Y (t)].
This [X(t), Y (t)] is a position within the map of the retina.
We ignore any torsional effects (rotations about the eye’s
optical axis) and model retina motion completely as trans-
lations. One unit of time is the inverse of the AOSLO’s FPS.

We define the AOSLO’s video as V (u, v, i), which is the
scalar intensity at position (u, v) within frame i. Positive u
is rightward, and positive v is downward, with u, v ∈ [0, 1].

We define the AOSLO forward model as F (M,R), a
function that attempts to reconstruct V given the retina’s ap-
pearance R and its motion M . That is, F (M,R)(u, v, i) =
R(X(i+ v) + u, Y (i+ v) + v). Notice that we sample M
at time i+ v rather than i to model rolling shutter capture.

We define the true motion and retina map to be M∗, R∗.
Our goal is to produce M̂, R̂ from V which are as close to
M∗, R∗ as possible. To do this, we minimize the squared
error between our reconstruction F (M,R) and the input V :

M̂, R̂ = argmin
M,R

||F (M,R)− V ||2 (1)

3.1. Conceptual Overview

Equation 1 represents a video reconstruction objective.
If it were of the form argminx ||Ax − b||2, then we could
potentially apply inverse-problem, optimization-based re-
construction techniques often used in computational imag-
ing. However, in our case the map and motion are entangled
in F , so we instead use constrained gradient descent (CGD)
to optimize the objective as described in Section 3.4.

We initialize this gradient descent search with an input
M̂0, R̂0 which is sufficiently close to M∗, R∗. Empirically,
gradient descent search on Equation 1 performs poorly un-
less it is initialized well. We efficiently compute this ini-
tialization with a convex optimization to find a sufficiently
accurate M̂0 followed by simple image rasterization to find
the accompanying R̂0.

Our convex optimization step efficiently finds M̂0 as a
globally optimal minimizer to a separate objective function
defined in Section 3.2. Surprisingly, this convex optimiza-
tion not only finds a good M̂0 to initialize CGD with, but it
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Figure 2: (Left) Comparison of offline
tracking techniques on two different sim-
ulated AOSLO videos. Note that the sim-
ulated motion was set to a high level to
stress-test all methods. R-SLAM, Az-
imipour et al., and Bedggood et al. are able
to track the motion and offer a fair com-
parison, but the Stevenson et al. algorithm
was not suited to track this magnitude of
motion. Stevenson was able to track the
real AOSLO videos (see Table 1) albeit
with evident reference frame artifacts (Fig-
ure 4). R-SLAM achieves the most faithful
reconstruction of the ground truth motion,
particularly in the vertical (y) direction.

Figure 3: Comparison of different techniques for offline estimation of the retina map from simulated retina video. Stevenson
fails to stabilize the input video, Azimipour (using only one frame) contains significant noise because it only stabilizes a
single frame, and Bedggood et al. (equivalent to Azimipour with averaging of multiple frames) suffers from blurry cones in
the top portion of the inset. Only R-SLAM properly resolves all cone cells in the image.

Figure 4: Comparison of different techniques for offline estimation of the retina map from real AOSLO video. Bedggood et
al. suffers from blurry/distorted cone cells, and Stevenson contains sharpness issues and duplicated cone cells towards the
bottom of the image. Only R-SLAM properly resolves all cone cells in the image.

can do so independent of the retina map R. That is, rather
than needing to jointly estimate both M∗ and R∗ simulta-
neously, this convex optimization step can estimate M∗ di-
rectly without ever computing an R̂0. This is done by sub-
stituting V with a set of dense 2D features that are globally
motion-tracked in V , as described in Section 3.2.1.

Given an estimate M̂ and the original video V , we can
use simple image rasterization techniques to produce an ac-
companying R̂. This R̂ is chosen to minimize Equation 1

for a fixed M̂ . This rasterization is expressed as S(M,V ),
which yields a 2D image analogous to R. This is how we
get R̂0 as S(M̂0, V ). S is described in more detail in Sec-
tion 3.3.

3.2. Initial Eye Motion Estimation via Convex Op-
timization

We use convex optimization to efficiently compute an
initial estimation of the eye’s motion M̂0. Our construction
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is novel in the way it formulates global eye motion recovery
as a convex problem using motion-tracked 2D points.

We define G to be a list of globally motion-tracked 2D
image features found via the method described in Section
3.2.1. Each G ∈ G is a single 2D image patch which we
represent as a list of the times and locations it is found in V .
That is, (uj , vj , tj) ∈ G means that the jth time that G was
found in V , it was found at time tj at position uj , vj within
the frame. G is sorted in increasing t.

Each G ∈ G is a noisy estimate of M∗, as visualized in
Figure 5. We define the following loss for our estimate of
M∗ given a single G ∈ G:

L(M,G) =

|G|−1∑
j=1

||(M(tj)−M(tj+1))− (pi+j − pj)||2

(2)
where pj = (uj , vj).

We also impose a Brownian prior on M∗ to help regu-
larize our estimation. We model M∗ as a Brownian random
walk sampled at discrete steps. The sample times are a list
T , sorted in increasing order, and are the collection of all tj
for all G in G. Each step of the Brownian random walk is a
zero-mean 2D Gaussian with variance equal to the duration
of the step. Taking the negative log likelihood:

L(M) =

|T |−1∑
i=1

||M(ti+1)−M(ti)||2

ti+1 − ti
(3)

By combining the inter-frame, tracking-based objective
of Equation 2 with the intra-frame objective of Equation 3,
we arrive at our overall convex optimization formulation:

M̂0 := argmin
M

λBL(M) + λT
∑
G∈G

L(M,G) (4)

Here, λB , λT ≥ 0 are hyperparameter weights. Equation
4 is a convex quadratic program (QP) with no constraints,
and so we can readily use existing convex optimization soft-
ware packages [5, 15] to compute an optimal solution for
M̂0. A proof of convexity is provided in the supplementary
material. M̂0 is a discrete motion trace. We form a continu-
ous representation of M̂0 via linear interpolation.

3.2.1 Feature Tracking

We track patch features across the entire duration of the
video to ensure loop closure, doing so using a map-aware
tracker that runs in linear time with respect to the size of the
map times the duration of the input video.

Each incoming video frame (384 pixels wide by 496 pix-
els tall) of the input V is divided into a grid of 64 by 16
patches. The patch height of 16 pixels in the vertical scan

Figure 5: The relationship between tracked video features
and eye motion trace, used as a constraint in our convex
optimization formulation (Equation 4). Left: horizontal po-
sition of the retina as a function of time. The noisy mo-
tion samples from a single feature are shown as diamonds.
The dashed curve is the motion estimate M̂0(t) resulting
from our convex optimization. Right: a sequence of video
frames with a single feature highlighted. If a feature appears
at column u1 at time t1, and appears at column u2 at time
t2, then the eye must have moved horizontally by approxi-
mately u1 − u2 between t1 and t2. The difference between
the total estimated motion M̂0 and the motion implied by
the feature tracking is minimized in Equation 2.

direction corresponds to 1 ms of capture time, which is
short enough to prevent the eye from moving significantly
and causing distortion within the patch (in the absence of
saccades). Each patch is a single feature that is tracked for-
ward through time by registering it against all future incom-
ing frames via fast normalized cross-correlation [23] imple-
mented on the GPU. To make this feature tracking robust to
outliers, we group together features that lie in the same row
into strips and perform RANSAC on these strips, aiming
to calculate each strip’s displacement in every subsequent
frame based on the maximum number of constituent fea-
tures that agree on that displacement. Features are said to
agree if their displacements are less than 2 pixels apart.

Tracking features across the entire video is important be-
cause it ensures loop closure, allowing the algorithm to rec-
ognize when a frame in the video revisits a part of the map
that was explored much earlier. However, tracking every
feature against every other frame would be of complexity
O(mn2), where n is the number of frames and m is the
number of features per frame. This brute force approach
is computationally infeasible, so we instead only choose to
track features that correspond to distinct areas of the un-
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derlying retina map. Every time our map-aware tracker en-
counters a new frame, if a particular candidate feature in
that frame has been matched with a previously-seen fea-
ture, then we discard the candidate feature and don’t add
it to the set of tracked features. More specifically, if some
fraction λf of the candidate feature’s area intersects a pre-
vious feature, the candidate is discarded. This ensures that
the number of tracked features remains proportional to the
size of the map, making the algorithm run in O(rn) time,
where r is the number of tracked features.

Furthermore, the feature tracker maintains a concept of
good and bad features within the tracked set - if a feature
has not been matched to at least λn frames in total or one of
the past λm frames, it is immediately discarded. This rule
removes features that offer little tracking data.

The λ hyperparameters can be tuned to give various
trade-offs between speed and the density of features, but in
practice λf = 0.9, λn = 4, and λm = 6 give considerable
speed-up for no noticeable loss in performance.

3.3. Drawing a Retina Map Given Estimate of Eye
Motion

If we are given M , then we can directly solve for a map
S(M,V ) which minimizes minR ||F (M,R)− V ||2 for the
fixed M . Given the motion of the retina, we know where
in retina map each pixel of V is sampling from. Therefore,
we construct the retina map S where the value at each lo-
cation is the average of the samples taken at that location.
This average value minimizes the squared error against the
noisy samples, thus minimizing ||F (M,R) − V ||2. Con-
ceptually, we build S(M,V ) by first using M to cancel out
the motion in each frame of V , producing a stabilized video.
The frames of this stabilized video are averaged together to
produce S. This process is visualized at time 1:40 in the
supplementary video.

3.4. Simultaneous Refinement of Eye Motion and
Retina Map via Constrained Gradient De-
scent (CGD)

R-SLAM jointly estimates the retinal map and motion
using constrained gradient descent (CGD), with the initial-
ization M̂0, V̂0 from the earlier steps. CGD converges much
faster than naively performing gradient descent on Equation
1 because it enforces consistency between the current map
estimate R and the input video V .

Using M̂0, V̂0 as the starting point for gradient descent is
not enough to ensure quick convergence. One issue is that
the optimization problem in Equation 1 is not sufficiently
constrained. To remedy this, we expect the following to
hold true for M∗, V ∗:

||S(M∗, V )−R∗||2 ≤ ε. (5)

In Equation 5, ε serves as a measure of the noise in the
process used record V . This constraint can be added to
Equation 1 to produce the new optimization problem:

argmin
M,R

||F (M,R)− V ||2

s.t. ||S(M,V )−R||2 ≤ ε.
(6)

Recall that M∗, R∗ are the desired optimal solutions.
To make the constraint in Equation 6 amenable to gradi-
ent descent, we observe that in the presence of white noise,
S(M∗, V ) = R∗ in expectation, which holds in determin-
istic terms as the number of video frames goes to infinity
by the central limit theorem. That is, averaging noisy frame
measurements should yield the true retinal map R∗ as the
number of frames goes to infinity. Thus, given sufficient
frames, the constant ε that bounds the difference between
S(M∗, V ) and R∗ is negligible. We then make the approx-
imation that ε = 0, which implies:

||S(M,V )−R||2 ≤ ε = 0

=⇒ ||S(M,V )−R||2 = 0

=⇒ S(M,V ) = R.

(7)

We approximate Equation 6 with the new objective:

argmin
M

||F (M,S(M,V ))− V ||2. (8)

The retina mapR is no longer a variable being optimized
directly—it is captured completely in the stabilization func-
tion S. Nevertheless, the retina map is still being jointly
estimated with the motion M , it is simply stored as a func-
tion of the input video V . Equation 8 ensures consistency
between M̂ , R̂, and V , enabling faster convergence. We
iteratively optimize Equation 8 via Algorithm 1.

Algorithm 1: Motion Refinement

Input: V, M̂0, α, n
for i← 1 to n do

R̂i−1 ← S(M̂i−1, V );
V̂ ← F (M̂i−1, R̂i−1);
L← ||V − V̂ ||2;
M̂i ← M̂i−1 − α∇M̂i−1

L;
end

In this algorithm, α and n are tunable hyperparameters
corresponding to the step size and number of descent itera-
tions, respectively. The functions S and F are implemented
as differentiable rasterization operations in PyTorch [27],
and the reconstruction loss L is naturally differentiable as it
is simply the Euclidean norm of the difference of two three-
dimensional tensors (video representations).

4857



3.5. Real-Time Eye Motion Tracking

Like the prior art reviewed above, our real-time track-
ing method uses normalized cross-correlation to calculate
the position of the latest strip of video against a retinal map.
We make two important improvements. First, we use a more
accurate retinal map, optimized in the offline process de-
scribed above. Second, we increase robustness of calculat-
ing the location of the latest strip by applying RANSAC.
Every incoming video frame from the AOSLO is split into
horizontal strips 384 pixels wide and 16 pixels tall. Each
strip is split into n sub-strips each of size b384/nc x 16.
Each sub-strip is then independently registered to acquire
n estimates P = {p1, . . . , pn} for the retina’s 2D position
relative to the AOSLO. We use RANSAC [20] to filter out
outliers, which is more robust than determining strip regis-
tration quality directly with the peak values output by nor-
malized cross-correlation.

4. Evaluation
R-SLAM is evaluated on both simulated and real

AOSLO video. Simulated tests allow us to compute exact
accuracies at the arcminute scale, while tests on real video
highlight R-SLAM’s ability to remove distortions that man-
ifest as spikes in the power spectrum. We only compare
R-SLAM to prior motion estimation techniques intended
for retinal imagery. More general SLAM algorithms are
excluded from comparison because they typically employ
feature trackers that are tailored for macroscopic objects
and are therefore ill-suited for tracking the self-similar cone
cells of the retina.

4.1. Simulation

We first evaluate the accuracy of tracking algorithms on
simulated AOSLO video, where we have ground truth eye
motion. First, we generate 15 synthetic cone mosaics using
the particle system described in [7]. Then, we compute a
pair of three-second videos per mosaic using artificial eye
motion traces derived from the random walk model in [18],
which integrates fixational eye movements and microsac-
cades. The simulated motion was set to a high level as a
stress-test for all methods. Altogether, the simulated dataset
contains 30 synthetic videos. The results of the evaluations
described below on this dataset are given in Table 1.

The offline tracking algorithm is tested on individual
simulated videos, whereby the trace output by our method
is sampled at the frequency of the ground truth motion trace
and then compared to this ground truth. We compute the
average magnitude of the 2D vector difference between the
output and ground truth traces. Since these traces can be
arbitarily offset, we use the offset that minimizes the error
magnitude.

The real-time algorithm is tested on individual videos,

using retina maps generated by other videos of the same
cone mosaic.

To test the effect of CGD on RMSE, we evaluate an ab-
lation of our system with CGD held out.

4.2. Real-world AOSLO Video

We validate R-SLAM on 34 real AOSLO videos previ-
ously recorded from two of the human subjects that were
reported in a paper published by Wang et al. [34]. Since
real-world AOSLO videos do not have ground truth mo-
tion traces, we use alternative metrics to evaluate the per-
formance of our algorithms. The results of the evaluations
described below on this dataset are given in Table 1.

One method consists of a spectral analysis, in which we
inspect the amplitude vs. frequency of the estimated motion
trace. As described in Section 2.2, periodic artifacts aris-
ing from distortions in the retina map manifest as spikes at
the video frame rate and higher harmonics (30 Hz, 60 Hz,
90 Hz, and so on) that deviate from the expected inverse-
frequency dependence of eye movements (-1 slope on a
log-log plot) [19]. Similar-appearing spectral artifacts are
reported in prior work [10, 32]. To quantify the magnitude
of these spikes in the power spectrum, we fit a line to the
spectrum on a log-log plot and define the spectral error as
the sum of any positive deviations from the linear fit evalu-
ated at 30 Hz and higher harmonics.

We also run our real-time method using various offline
retina mapping techniques. The 34 videos consist of 17
pairs, where each pair comes from a single retinal location
in one of the two subjects. The real-time method is evalu-
ated on each video by using the other video in the pair to
create a retina map, and the real-time motion trace is com-
pared to the output of offline R-SLAM on the same video.

Figure 6: Comparison of power spectra of motion traces
output by Stevenson [32] (left) and R-SLAM (right). In
black is the power spectrum of the motion trace for a given
video, in blue is the best linear regression fit, and in red
are markers denoting the harmonics of 30 Hz (30 Hz, 60
Hz, 90 Hz, and so on). Stevenson exhibits large spikes at
these harmonics, indicating that their motion traces contain
periodic artifacts. The R-SLAM estimated motion does not
exhibit these artifacts.
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Method Stevenson
[32]

Bedggood et
al. [9]

Azimipour et
al. [7]

R-SLAM
without CGD R-SLAM

1
Simulated Video: Offline
Mean Error Magnitude

(pixels / arcmin) ↓
9.97 / 1.05 2.67 / 0.280 N/A 1.15 / 0.121 0.821 / 0.086

2
Simulated Video: Real-time

Mean Error Magnitude
(pixels / arcmin) ↓

4.82 / 0.506 2.67 / 0.280 2.68 / 0.281 1.31 / 0.138 1.31 / 0.138

3 Real Video: Offline Spectral
Error (X / Y Direction) ↓ 4.84 / 6.54 3.25 / 5.59 N/A N/A 1.81 / 1.67

4

Real Video: Real-time
Average Difference

Magnitude w.r.t. Offline
R-SLAM (pixels / arcmin) ↓

26.95 / 2.83 34.60 / 3.63 38.17 / 4.01 N/A 23.98 / 2.52

Table 1: R-SLAM evaluated on simulated video (rows 1/2) and real AOSLO video (rows 3/4). Row 1: we compute the
magnitude of the error (displacement) of each output motion trace against the ground truth, taking the mean over all tracking
points in the trace. R-SLAM incurs 3x less error than prior work. Row 2: each method outputs a map that is used for
real-time tracking, and the real-time traces are compared against the ground truth. We compute the mean magnitude of the
error for each real-time motion trace. R-SLAM incurs 2x less error than prior work. Row 3: in the absence of ground truth,
we compute the spectral error of each output motion trace, which penalizes spike artifacts occurring at the harmonics of 30
Hz in the power spectrum (defined in Section 4.2). Row 4: each method outputs a map that is used for real-time tracking, and
the real-time traces are compared to the trace output by offline R-SLAM, which is the best offline tracking method available
in the absence of ground truth. Azimipour et al. [7] is only used to test real-time tracking because we only use it to compute
a retina map. R-SLAM without CGD is only included as an ablation for comparison on simulated video.

5. Discussion
In this section, we examine in greater detail R-SLAM’s

differences with prior methods. We also provide further di-
rections for future work.

5.1. Analysis of Results

On the simulated dataset, R-SLAM achieves the lowest
error on both real-time and offline eye motion tracking com-
pared to prior work (Table 1). R-SLAM achieves 0.8 pixels
of mean displacement error against the ground truth (im-
proving from 1.15 pixels of error with only convex opti-
mization and no CGD). This represents a 3x error reduc-
tion compared to prior work. When using each method’s
estimated retina maps for real-time tracking, we find that
R-SLAM achieves 2x lower error compared to prior work.
There is no significant difference between using the retina
maps obtained before and after CGD. This is unsurprising
since the cross-correlation step in real-time tracking is only
accurate to a pixel, and CGD only yields sub-pixel improve-
ments on this dataset.

On the real-world dataset, R-SLAM also achieves lower
errors on both real-time and offline eye motion tracking
compared to prior work (Table 1). The real-world data lacks
known ground truth motion. In place of ground truth we
use R-SLAM’s offline output since in simulation it achieves
sub-pixel error. For this reason, it is impossible to evaluate

the offline output using the same metric as in Row 1 of Ta-
ble 1. Using the spectral error metric defined in Section 4.2,
R-SLAM achieves the lowest error, which corresponds to
the artifact-free power spectra shown in Figure 6.

5.2. Future Work

We hope that our optimization-based framework can
bring new AOSLO applications within reach. One place for
improvement is to incorporate 2D rotation (torsion) into our
model. Baker et al. [8] show some success in approximating
rotation with a general affine transform, and similar modi-
fications may be applicable to our model. Another future
direction is to generate maps that encompass larger areas of
the retina, which would require us to address its curvature.
We currently model the retina as a planar surface, which
proves sufficient for our motion and map estimation exper-
iments. However, a natural extension would be to adopt a
spherical model, which would enable the creation of larger
maps where the retina’s curvature becomes a significant fac-
tor.
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