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A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information
from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local
spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which im-
parts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated
in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not
cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal
anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-,
middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used
adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had
been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M
cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially
activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons medi-
ating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately,
implying that the cone-selective circuitry supporting red–green color vision emerges after the first retinal synapse.
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Introduction
In sensory circuits, the receptors forming the first tier of neurons
are often the first to be well understood, whereas the second tier
can be more difficult to study, even though they remain central to

understanding how the circuit functions. A prime example of
such a challenge is found in the retina. Cone photoreceptors have
been characterized extensively (Baylor et al., 1987; Schnapf et al.,
1990), whereas examination of the signals that they pass to hori-

Received Feb. 24, 2017; revised July 19, 2017; accepted Aug. 17, 2017.
Author contributions: W.S.T., W.M.H., A.R., and L.C.S. designed research; W.S.T., W.M.H., R.S., and L.C.S. per-

formed research; W.S.T., W.M.H., and L.C.S. analyzed data; W.S.T., W.M.H., R.S., A.R., and L.C.S. wrote the paper.
This work was supported by the National Institutes of Health (Bioengineering Research Partnership Grant R01-

EY023591; National Eye Institute Cooperative Agreement U01-EY025501; and Grants R01-EY023581, R21-
EY021642, K23-EY022412, P30-EY003039, P30-EY001730, and P30-EY003176), Deutsche Forschungsgemeinschaft
Emmy Noether Programme (Grant Ha5323/5-1, Ha5323/4-1, and Ha5323/3-1), Fight for Sight (postdoctoral
award), the American Optometric Foundation (William C. Ezell Fellowship), the Eyesight Foundation of Alabama,

and Research to Prevent Blindness (unrestricted grant). R.S. holds a Career Award at the Scientific Interface from the
Burroughs Wellcome Fund and a Career Development Award from Research to Prevent Blindness. We thank David
Brainard and Brian Schmidt for comments on the manuscript, Pavan Tiruveedhula for technical support, and Alex-
ander Meadway for help with cone coupling analysis.

A.R. has two patents on technology related to the Adaptive Optics Scanning Laser Ophthalmoscope (USPTO
#7,118,216, “Method and apparatus for using AO in a scanning laser ophthalmoscope,” and USPTO #6,890,076,
“Method and apparatus for using AO in a scanning laser ophthalmoscope”). These patents are assigned to both the
University of Rochester and the University of Houston and are currently licensed to Canon, Inc. Japan. Both A.R. and

Significance Statement

We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of
human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)-
and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral
demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent
with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results
demonstrate a clear link between the neural architecture of the visual system inputs— cone photoreceptors—and visual percep-
tion and have implications for the neural locus of the cone-specific circuitry supporting color vision.
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zontal cells has led to different conceptions about how cone sig-
nals are transformed before they reach retinal ganglion cells for
transmission to the brain. Because horizontal cells are positioned
to mediate spatial antagonism in the outer retina (Baylor et al.,
1971; Verweij et al., 2003; Packer et al., 2010), they can be in-
volved in coding two kinds of signals via surround inhibition:
spatial contrast and, in trichromatic primates, spectral informa-
tion (Thoreson and Mangel, 2012). Although spatial opponency
is a hallmark of many retinal ganglion cell types, the functional
connectivity that endows neurons in the midget ganglion cell
pathway with spectral opponency has been variously inferred
from electrophysiological recordings, ranging from receptive
fields featuring spectrally cone-type-pure organization (Wiesel
and Hubel, 1966; Reid and Shapley, 1992; Martin et al., 2001;
Reid and Shapley, 2002) to those with a mixed spectral composi-
tion (De Monasterio and Gouras, 1975; Lennie et al., 1991; Diller
et al., 2004; Buzás et al., 2006; Crook et al., 2011).

In none of the studies mentioned above were the set of cones
providing the signals known. Given the variation in cone ratios
and arrangement among retinae (Roorda and Williams, 1999;
Hofer et al., 2005b; Sabesan et al., 2015), the variable outcomes
could have arisen from the specific local spectral topography of
the cone mosaic stimulated in each instance or from heterogene-
ity in the wiring schemes deployed within a single class of neu-
rons. Moreover, with conventional in vivo techniques, small eye
motions and the normally imperfect ocular optics lead to un-
known spatiotemporal patterns of photons impinging on the
photoreceptors, adding more uncertainty to how the circuit is
being driven. Multielectrode array studies have been able to re-
solve individual cone inputs to ganglion cells (Field et al., 2010; Li
et al., 2014; Freeman et al., 2015), but the results have thus far
been confined to the peripheral retina. To overcome these issues
in probing how cone signals interact in the central retina, we used
adaptive optics (AO) microstimulation (Harmening et al., 2014)
coupled with high-speed retinal tracking to measure detection
thresholds for stimuli delivered to parafoveal cones. The spectral
types of the cones had been identified independently by ab-
sorptance imaging (Sabesan et al., 2015). By examining the link
between the spectral topography of the cone mosaic and the
detection sensitivity of single receptors, we demonstrate that a
functional signature of early retinal circuitry—spatial antago-
nism— emerges when vision is tested at the elementary scale of
individual cones.

Materials and Methods
AO imaging and cone-resolved retinal densitometry. We used a multiwave-
length AO scanning laser ophthalmoscope (AOSLO) for structural and
functional characterization of the trichromatic cone mosaic in two male
subjects with normal color vision. All procedures were approved by the
Institutional Review Board at the University of California–Berkeley and
adhered to the tenets of the Declaration of Helsinki. Informed consent
was obtained from each subject at enrollment. Before imaging, cyclople-
gia and mydriasis were induced via instillation of 1.0% tropicamide oph-
thalmic solution.

Detailed descriptions of using AOSLO for visual psychophysics and
retinal imaging have been reported previously (Roorda et al., 2002; Tuten

et al., 2012). Briefly, broadband light from a supercontinuum source
(SuperK Extreme; NKT Photonics) was long- and band-pass filtered
sequentially to produce three independent narrowband input channels,
one in the infrared (IR; � � 842 � 11 nm) for retinal imaging and
wavefront sensing and two stimulation channels positioned in the green
(� � 543 � 11 nm) and red (� � 710 � 12.5 nm) portions of the visible
spectrum. High-speed acousto-optic modulators (AOMs) were used to
control stimulus intensity with 8-bit resolution. The relative vergences of
the 3 input channels were adjusted to account for the longitudinal chro-
matic aberration of the human eye before being recombined and raster
scanned across a 1.2° square patch of retina. Wavefront measurement
and correction were achieved by a Shack–Hartmann wavefront sensor
and a 144-actuator deformable mirror (Multi-DM; Boston Microma-
chines), respectively. Light collection optics were designed to separate
light emerging from the eye into three corresponding output channels,
each equipped with a photomultiplier tube positioned behind a confocal
pinhole to permit simultaneous multiwavelength imaging. Transverse
chromatic aberration (TCA) was computed by comparing the relative
shifts in retinal structure observed in these images (Harmening et al.,
2012); stimuli were delivered with these TCA shifts corrected.

The approach to identifying L, M, and S cones using retinal densitom-
etry was described in detail previously (Sabesan et al., 2015): the ab-
sorptance scatter plots, the relative numbers of L, M, and S cones, and the
classification error estimates for the same subjects (S1 and S2) can be
found in that study. Densitometric assignment confidence values for
each tested L and M cone were estimated using the Gaussian mixture
model clustering analyses described previously (Roorda and Williams,
1999; Hofer et al., 2005b; Sabesan et al., 2015). Briefly, for each cone in
the mosaic, the change in reflectance intensity after an L-cone-selective
bleach was plotted in Cartesian coordinates against the reflectance
change obtained after a bleach targeting M cones. Each data point was
converted into a polar angle and compiled into histograms, which were
fit with the sum of two 1D Gaussians; the point of intersection of the
component Gaussians delineates the spectral clusters. For a given polar
angle, the densitometric confidence value was determined by the ratio of
the component Gaussian to the summed Gaussian. Therefore, cones with
a polar angle at the intersection of the component functions will feature
a 50% assignment probability. The average probability of cone assign-
ments for the specific cones tested in our experiments was 96.8% and
95.6% for subjects S1 and S2, respectively.

Psychophysical procedures and analyses. For each subject, a contiguous
array of cones located within the cone mosaic classified by AOSLO den-
sitometry was selected for increment threshold testing using AO micro-
stimulation (Harmening et al., 2014). In retinal coordinates, the tested
cones were located on the horizontal meridian �1.5° temporal to the
foveal center in both subjects. Thresholds were measured under condi-
tions akin to the Stiles’ two-color cone-isolating paradigm (Stiles, 1959).
In this approach, chromatic backgrounds were used to elevate the steady-
state activity of one class of cones, thereby reducing their sensitivity to a
monochromatic test flash. The subject’s task was to detect a nominally
0.45 arcmin square stimulus (� � 710 nm for biasing detection toward L
cones; � � 543 nm for M-cone-biased stimulation) presented for 125 �s
against a background comprising three elements: (1) the dim, IR imaging
raster (842 nm), (2) low light leak through the stimulus channel (due to
imperfect extinction of the AOM), and (3) a steady adapting background
field with a spectral composition that was chosen to suppress the sensi-
tivity of the nontargeted cone classes (see Fig. 1 A, D; �peak � 470 nm for
M cone adaptation; �peak � 710 nm for L cone adaptation). For M and L
cone adaptation, the cumulative luminances of the adapting back-
grounds were 30 and 60 cd/m 2, respectively. Photopigment isomeriza-
tions induced by the background were computed for each receptor class
using the Psychtoolbox routine RetIrradianceToIsoRecSec (Brainard,
1997). The M-cone-adapting field produced 5.34 (L), 5.50 (M), and 5.35
(S) log isomerizations cone �1 s �1; for L-directed adaptation, these val-
ues were 5.62, 5.44, and 2.22 log isomerizations cone �1 s �1, respectively.
Therefore, in addition to reducing their sensitivity to flashes of fixed
intensity, the chromatic backgrounds produced more activity in cones
belonging to the class targeted for adaptation (0.17 log units, or �1.5�).
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Targeted cones were selected manually in a high-magnification view of
the retina in the imaging and stimulus delivery software interface (Yang
et al., 2010). A total of 108 and 105 photoreceptors were selected for
testing under the M and L cone adaptation paradigms, respectively; 92
were tested under both conditions. Real-time retinal tracking permitted
stimulus delivery to the cone of interest with cellular-scale precision
(Arathorn et al., 2007). The delivery error across all trials (n � 10,992)
was 0.20 arcmin (�1 �m). This corresponds to �20% of the cone inner
segment diameter at our test eccentricity (�1.5°), confirming that most
of the delivered light from the trials (�80%) was confined to a single
targeted cone (Harmening et al., 2014).

In each set of trials, up to three cones were selected for testing. After
adapting to the background light for 3–5 min, cone thresholds were
measured using randomly interleaved, 15-trial adaptive QUEST stair-
cases guided by a yes–no response paradigm (Watson and Pelli, 1983;
King-Smith et al., 1994). Detection thresholds, defined as the intensity at
which the subject detects the stimulus 50% of the time, were expressed on
a linearized scale of arbitrary units, with a value of 0 indicating the pres-
ence of the background alone and a value of 1.0 corresponding to the
upper limit of stimulus modulation. Note that the QUEST algorithm
uses priors about the underlying psychometric function governing de-
tection. In instances where the maximum intensity stimulus was detected
�50% of the time, threshold estimates were thus produced that exceeded
the maximum deliverable light intensity. All threshold measurements
were repeated at least twice. As a control, a subset of cones exhibiting high
thresholds under our test conditions were remeasured with the adapting
background switched off. A recovery of sensitivity supported the inter-
pretation that elevated thresholds were induced by adaptation and not
due to underlying cone dysfunction or insufficient light delivery. Under
the stimulus conditions available, S cone sensitivity was �2 log units
below M or L cone sensitivity. Therefore, S cones were unlikely to provide
a measurable threshold (cone thresholds were expected to be �1). TCA
was measured before and after each block of trials (Harmening et al.,
2012) and a bite bar was used to prevent shifts in subject position during
testing. Blocks of data for which TCA shifted by more than 1/2 of a cone
diameter (�4 pixels; 3 �m on the retina) were excluded from subsequent
analyses. The median TCA shift across all trial blocks was 0.84 pixels; just
three blocks (7.6%) had TCA shifts between 3 and 4 pixels.

Estimating the effects of optical blur and cone coupling. A model of light
capture was constructed to examine the effect of uncontrolled stimulus
blur on detection across the trichromatic mosaic. The 2D Gaussian light-
collecting apertures representing individual cones were placed at the
cone locations observed in the AOSLO image. The size of each aperture,
defined as the full width at half-maximum, was set to be 50% of the inner
segment diameter at the test eccentricity (Hirsch and Curcio, 1989; Ma-
cLeod et al., 1992) and its light capture efficiency (i.e., the peak height of
the Gaussian) was scaled by the expected cone contrast for each spectral
type given the chromatic content of the background and stimulus (Cole
and Hine, 1992). A spatiotemporal representation of the 3-by-3 pixel
stimulus was then generated via convolution with a diffraction-limited
point spread function and a 2D Gaussian with SD matched to the ob-
served tracking error in stimulus delivery across all trials (0.20 arcmin).
This stimulus representation was centered on each cone in the weighted
model array, with the integrated element-wise product of the cone and
stimulus matrices representing the effective retinal light capture by the
entire mosaic for stimuli centered on that photoreceptor.

Predicted thresholds attributed to each cone in the model array
were computed based on the simplifying assumption that, across this
small patch of retina, a fixed number of photopigment isomerizations,
summed from all cones in the array, must be triggered to reach threshold.
Therefore, the predicted cone threshold map is the inverse of the effective
light capture map; the product of the two remains constant across the
array. To quantify the effect that optical defocus or uncorrected aberra-
tion might have in explaining the results, optical defocus in diopters ( D)
was introduced to the stimulus representation until the differences be-
tween the observed and simulated threshold topographical maps, quan-
tified as their root mean squared error, were minimized.

We note here the following assumptions implicit to the light capture
model: (1) each cone has the same inner segment diameter, (2) each cone

has a sensitivity governed by its endogenous photopigment and is other-
wise independent of its neighbors, (3) each cone has an equivalent input
weight onto downstream circuitry, and (4) all cone outputs are summed
linearly across the entire mosaic. No additional assumptions are made
about downstream signal processing. This model can be considered con-
servative in that it deliberately overemphasizes the contributions of the
photons landing on adjacent cones (due to optical blur) to the visual
response. For instance, the model pools every absorbed photon linearly
despite the fact that the photoresponse of cones is nonlinear for a given
state of adaptation (Valeton and van Norren, 1983; Schnapf et al., 1990).
In addition, the area of linear spatial summation only encompasses �20
cones in the central retina, with psychophysical and ideal observer anal-
yses both confirming that light falling outside this zone is less effective at
triggering detection (Inui et al., 1981; Davila and Geisler, 1991; Dalimier
and Dainty, 2010). Therefore, a more elaborate model of detection would
downplay the effect of the scant light falling onto more distant receptors
when the stimulus is blurred, in turn pushing the amount of defocus
required to explain the topographical pattern of sensitivities that we
observed even higher. For these reasons, our model is conservative at
estimating the amount of blur required to explain our results. Finally,
although this model does not attempt to capture all of the physiological
complexities involved in the processing of cone signals by postreceptoral
circuitry (Li et al., 2014; Freeman et al., 2015), a similar implementation
nonetheless accounts for the sensitivity gradient observed with AO-
corrected microstimuli delivered on and between cones in the parafovea
(Harmening et al., 2014).

To examine how gap junctional cone coupling might influence cone
thresholds, we estimated the change in membrane voltage that would
occur in one cone under steady-state current injection in neighboring
cones of a network model (Detwiler and Hodgkin, 1979). We calculated
values for cones embedded in both a hexagonal and a square array be-
cause there is evidence that cones may be coupled to all or to only a few of
their surrounding neighbors (Tsukamoto et al., 1992; DeVries et al.,
2002; Hornstein et al., 2004). The first step was to calculate the space
constant �, given the cone coupling resistance (rs), cone input resistance
(rm), and effective cone spacing D as follows:

For a square array:
rs

rm
� 2 cosh�D

�� � 2 (1)

For a hexagonal array:
rs

rm
� 4 cosh���3

2 �1/2�D

��� � 4

(2)

For each array type, we solved for � in units of cone spacing D as follows:

� �
1

acosh��

2
� 1� (3)

� �
1

� 2

�3
�1/ 2

acosh��

4
� 1� (4)

where � � rs/rm. In primate cones, rm is likely to be fairly consistent at
�100 M	, whereas cone coupling conductance (1/rs) occurs over a wide
range (averaging 650 pS). We accommodated this range by computing �
over cone conductances of 400 –2400 pS, values reported by Hornstein et
al. (2004). For the square array, this yielded a � of 0.3– 0.57, whereas for
the hexagonal array, � was 0.35– 0.7. Space constants of �1 suggest that
current flow through gap junctions mostly affects cones that are imme-
diate neighbors. Equation 3 was used by prior studies to estimate �
(DeVries et al., 2002; Hornstein et al., 2004).

The second step was to estimate the membrane voltage change for
cones with the different values of � at varying radial distances (r) from a
modulated cone as follows:
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Vr

i0rm
�

D2

�2

K0
r/��

2�
(5)

where i0 is the injected current at r � 0, and K0 is the zeroth-order
modified Bessel function of the second kind. This formula follows equa-
tion 10 in Detwiler and Hodgkin (1979), a continuous-sheet model ap-
proximation that they showed slightly overestimates the spread of
potential in adjacent cones compared with the network model for values
where � � 1. Because our adapting light is a steady-state condition, the
values calculated from Equation 5 provide a percentage change in mem-
brane voltage for cones at various distances r in the network when the
background light is turned on at the cone where r � 0. For a cone situated
in a network of n surrounding cones of the opposite type (the same type
would produce no effect), the total change in voltage (�V ) would be the
following:

�V � n� Vr

i0rm
� 
a � 1� (6)

where a is the relative activity level in opposite-type cones expected for
the adapting background light (�1.5 in our stimulus conditions; see
above). Assuming that the incremental sensitivity of cone photorecep-
tors adheres to the Weber–Fechner law of adaptation (Schnapf et al.,
1990), the effect of electrical coupling on cone thresholds was assumed to
be proportional to the relative voltage changes estimated across the range
of receptor configurations.

Cone neighborhood analyses. The influence of local spectral demo-
graphics on individual cone sensitivities was first explored by examining
the relationship between L and M cone thresholds and the number of
directly adjacent, preferentially activated (M/S or L) photoreceptors. For
each adaptation condition, the relationship between threshold and local
receptor configuration was assessed for data combined from both sub-
jects using linear regression. Preliminary analyses confirmed the slopes of
the threshold versus neighborhood fits were statistically indistinguish-
able between subjects for each adaptation condition ( p � 0.687 for L
cones; p � 0.647 for M cones). Because our goal was to examine the
relative changes in threshold as a function of neighborhood demograph-
ics, we minimized any potential differences in overall sensitivity between
observers (e.g., due to differences in detection criterion for the yes–no
task or variation in preretinal screening of the ocular media) by applying
vertical shifts to bring the mean sensitivities of cones in the most com-
mon receptor configuration (n � 3 opposite-type neighbors) into
alignment before fitting. Data were combined in this fashion for all sub-
sequent neighborhood analyses, with plot axes labeled “Relative thresh-
old” to indicate this normalization.

The relationship between cone threshold and neighborhood was then
evaluated more quantitatively and across greater spatial scales by deriv-
ing two metrics of local mosaic demographics that incorporated known
features of primate H1 and H2 horizontal cells (Dacey et al., 1996; Dacey
et al., 2000). The contributions of individual L, M, and S cones to each
of the indices described below were computed from their Gaussian-
weighted proximities to the cone of interest as follows:

Li � exp� 
Di/rLM�2�
Mj � exp� 
Dj/rLM�2�
Sk � exp� 
Dk/rS�

2�
(7)

where i–k are indices independently identifying L, M, and S cones, re-
spectively; D is the distance to the cone of interest; and rLM and rS are the
radii of the spatial weighting functions for the two indices, respectively.
Specifically, these weighting function radii were defined as the distance
from the peak of the weighting function to the point where it reached
37% (i.e., 1/e) of its maximum height (Croner and Kaplan, 1995).

The first neighborhood metric, which we term the H1 opponency
index, is inspired by H1 horizontal cells that pool L and M cone signals
linearly while avoiding S cone input altogether (Dacey et al., 1996; Dacey
et al., 2000). For an L cone in the mosaic, denoted i’, the H1 index is
calculated as follows:

H1 opponency indexL,i� �

1 � 	L�*�jMj

	L*�i�i�Li � 
1 � 	L�*�jMj

(8)

where 	L is the synaptic input weight of L cones to H1 horizontal cells.
This metric reflects the proportion of M cones within the local popula-
tion of L and M cones, thereby representing the fractional drive of M
cones to the local H1 network. To calculate the H1 index for an M cone,
the summed M cone term in the numerator is exchanged for its L cone
counterpart.

Physiological recordings from H2 horizontal cells suggest that these
interneurons are driven prominently by S cones. The S-cone input to
these cells is approximately equivalent to the summed drive of L and M
cones (Dacey et al., 1996) despite comprising only a small fraction of the
overall cone population (Curcio et al., 1991; Hofer et al., 2005b). There-
fore, if S cones exert any influence on the sensitivity of nearby L and M
cones, then one might expect these interactions to occur at a spatial scale
similar to H2 horizontal cell anatomy. This hypothesis was assessed by
comparing the thresholds of individual L and M cones to a metric repre-
senting their spatially weighted proximity to all S cones in the mosaic. For
an individual L cone in the mosaic, denoted i’, the S cone proximity index
is as follows:

S cone proximity indexL,i� � �kSk (9)

where Sk is computed using Eq. 7 and depends solely on the radius, rS, of
the spatial weighting function.

The H1 and S cone proximity weighting function radii (rLM and rS,
respectively) that best explained the variance observed in L and M cone
thresholds were determined independently using nonlinear least-squares
fitting. In cases in which both the H1 and S cone proximity indices
captured a significant amount of the threshold variance for a particular
dataset, multiple regression was used to examine the significance of these
predictors operating together in a nested model. A role for spectrally
biased connectivity into the H1 network was examined by allowing the
H1 index cone weighting parameter (	L) to vary freely and testing
whether it explained more variance than a restricted model in which the
L and M cone weights were constrained to be equal. In all cases, model
performance was evaluated using the F test, with p � 0.05 considered
statistically significant. All model fitting and statistical analyses were per-
formed using MATLAB (The MathWorks). The spatial scales at which
these neighborhood indices best accounted for our data were compared
with histological measurements obtained from camera lucida drawings
of Golgi-filled human H1 and H2 horizontal cell dendritic fields taken at
a similar eccentricity (0.5 mm � 1.6°) (Kolb et al., 1992).

Results
Single-cone sensitivity within the trichromatic cone mosaic
To investigate the effect of local circuitry on a cone’s threshold,
we took advantage of the nearly random arrangement of L-, M-,
and S-wavelength-sensitive cones in the human retina, a conse-
quence of which is that cones of one spectral class will be sur-
rounded by varying numbers of opposite-type receptors (Hofer
et al., 2005b). By elevating steady-state activity preferentially in
one subset of cones (L or M) with chromatic adapting fields, the
degree to which cone signals influence each other at the single-
cell scale could be inferred from the relationship between cone
thresholds and the local spectral topography. Two-color incre-
ment threshold testing is a classic psychophysical method for
biasing detection toward spectrally distinct mechanisms in the
human visual system (Stiles, 1949, 1959), possibly including the
three cone subtypes (Wald, 1964). Before using this approach to
probe how signals from individual cones in the central retina
might interfere with each other perceptually, we first examined
the extent to which its efficacy at isolating cone types is main-
tained at the cellular level. Figure 1 shows an example of a pair of
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cones, tested on the same day, in which the perceptual threshold
derived from each cone was measured under L- and M-cone-
adapting conditions. When M cones were adapted (Fig. 1A–C),
Cone 1 exhibited a threshold that fell within the modulation
range of the stimulation channel, indicating that it was likely an L
cone, whereas the threshold for Cone 2 was �1, exceeding the
modulation limit of the stimulation source, making it likely an M
cone. When the blue adapting light was turned off, Cone 2 was
retested and found to have a threshold within the stimulus range;
this control condition eliminates the possibility that Cone 2 was
an S cone or possibly dysfunctional. The same pair was then
tested under L-cone-adapting conditions (Fig. 1D–F). Here, the
threshold behavior was reversed, with Cone 1 now having a
threshold �1 and Cone 2 readily measured. These data are con-
sistent with the cone identities made under M cone adaptation.
Of a total of 121 tested cones, 92 cones were examined under both
adapting scenarios. From those, 58 cones (63%) had thresholds
within the modulation range after adapting to one background
and fell above the modulation limit (i.e., �1) when measured
against the other background, similar to the cones shown in
Figure 1. This suggests that cone-targeted microstimulation cou-
pled with differential chromatic adaptation can reveal spectral
specificity on the cellular scale, potentially enabling a cone-by-
cone functional mapping of the trichromatic mosaic.

To verify independently the psychophysically determined
cone identities, we made threshold maps over contiguous por-
tions of the mosaic (Fig. 2A,B,D,E) and compared them with
maps generated by absorptance imaging (Fig. 2C,F). Such a com-
parison requires creating a criterion for converting the threshold
values to a spectral type. To do so, the L and M thresholds were

compiled into histograms for each adaptation condition (Fig.
2G,H) and a criterion was calculated that maximized the agree-
ment between the densitometric classification and the threshold
distribution using Cohen’s 
 coefficient, a statistic of agreement
for categorical data (Cohen, 1968). Cones with thresholds below
the criterion were classified as belonging to the ostensibly un-
adapted class, whereas those with thresholds exceeding the crite-
rion would be classified as belonging to the adapted subset or as S
cones (given that stimulus conditions did not permit sufficient
light delivery for S cones to register sensitivity). For both L- and
M-cone-adapting conditions, we found that individual cone
thresholds generally agreed with predictions based on the action
spectra of the photopigments that they housed—77% of cones
behaved according to type (163/213; Cohen’s 
 � 0.46; p �
0.001). To rule out misclassification during absorptance imaging
as a source of error in our functional assignments of cone type
(see Materials and Methods), we examined the effect of excluding
cones with densitometric assignment probabilities below a con-
fidence value on the observed agreement between the objective
and psychophysical classification approaches (Fig. 2I). The
agreement between classifications was relatively unchanged over
almost the entire range of densitometric confidence values, sug-
gesting that agreement was robust in the face of densitometric
errors. Together, these data demonstrate that psychophysical
performance linked to specific cone types can be probed readily
on an individual photoreceptor basis.

Spatial and spectral patterns of cone interactions
As evident in Figure 2, the cell-by-cell specificity of sensitivity
across the mosaic was less pronounced than would be expected if

Figure 1. Measuring photoreceptor increment thresholds against chromatic adapting fields. A, Schematic of subject’s view during microstimulation. A 470 nm adapting light selectively reduced
the sensitivity of M and S cones to the cone-sized test probe (710 nm) flashed on the 1.2° imaging background. Stimulus is not to scale. B, Stimulus light delivery distribution for two targeted cone
photoreceptors plotted on the cone-resolved AOSLO image. The contour lines (Cone 1 � dashed; Cone 2 � solid) indicate the stimulus light intensity accumulated over 15-trial staircases,
incorporating a diffraction blur of the 3 � 3 pixel stimulus (0.45 arcmin) and errors in delivery location. C, Threshold staircases for Cones 1 and 2. Final threshold estimate for Cone 2 exceeded the
light intensity limit (gray horizontal line), indicating a cone unable to detect the signal at maximum intensity. Cone 1 remained sensitive to the stimulus, a likely L cone. Control trials, in which the
blue adapting light was turned off and Cone 2 regained sensitivity, confirmed that the previously elevated threshold was due to the adapting field, making this likely an M cone. Threshold estimates
are in arbitrary units (au); see Materials and Methods. D–F, A 710 nm L-cone-adapting light reduced sensitivity of Cone 1 to a 543 nm test probe, biasing detection toward the previously insensitive
Cone 2; data are otherwise displayed as in A–C.
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detection were governed solely by the spectral sensitivity of each
targeted cone; if this were the case, then one would predict little
threshold variability within each cone class. Instead, we observed
substantial within-class variability during both L and M cone
adaptation (Fig. 2G,H), including a number of receptors exhib-
iting wholesale deviations from predictions based on their spec-
tral identities determined from absorptance imaging. Errors in
densitometric assignments have already been ruled out as a pri-
mary cause of the spectral disagreement (Fig. 2I), suggesting that

variability in thresholds for a given spectral type arises from an-
other source.

Under adapting conditions in which steady-state activity is
elevated preferentially for one spectral type, sensitivity of a cone
may depend on the feedback inhibition from cones in its imme-
diate surroundings. To test the hypothesis that the threshold
measured in a given cone might be influenced by the spectral
makeup of its neighborhood, threshold data for all cones in the
class less sensitive to the background (L or M) were binned ac-

Figure 2. Cone threshold maps are spectral-type specific but less punctate than the cone mosaic topography. A, Threshold maps for cones tested under M cone adaptation in Subject 1. Color code
indicates the average threshold of each cone. White arrowheads mark example L cones surrounded by three or more M/S cones (cf. A,C); these cones exhibited higher-than-average thresholds.
B, Cone array tested during L cone adaptation. White arrowheads mark example M cones with high thresholds that had at least four spectrally unlike neighboring cones. C, L (red), M (green), and
S (blue) cone photoreceptor mosaic for Subject 1 (eccentricity � 1.5°) classified by densitometry. Cones tested in A and B during M (710 nm test) or L cone adaptation (543 nm test) are outlined in
red and green, respectively, and in yellow for both conditions. D–F, Cone threshold and densitometry data for Subject 2; otherwise as in A–C. Cones 1 and 2 from Figure 1 are shown in D. Scale bar
applies to all maps. G, H, Histograms of cone thresholds collected against M- or L-cone adapting backgrounds; subject data are combined. Densitometric identities are plotted up for L cones and down
for M/S cones. A classification criterion (gray dashed line) delineated cones belonging to the classes differentiated by the perceptual task (see text). Filled color bars are cones behaving according to
their spectral type; white filled bars are cones performing against type. I, Cone classification agreement as a function of densitometry assignment confidence for M (top) and L cone adaptation
(bottom). Black lines show the percentage agreement computed for cones with densitometry assignment confidence (see Materials and Methods) that equaled or exceeded the abscissa value
(dashed line represents percentage exceeding confidence criterion).
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cording to the number of directly adjacent preferentially acti-
vated cones (M/S or L, depending on the conditions). We found
that the sensitivity of cones belonging to the same spectral class
varied systematically with the number of opposite-type (i.e., ac-
tivated) neighbors in their immediate vicinity. The magnitude of
this effect was similar across the two test conditions (Fig. 3; L
cones: slope � 0.10; r 2 � 0.23; p � 0.001; M cones: slope � 0.09;
r 2 � 0.14; p � 0.023). For instance, measured against a long-
wavelength background, an M cone surrounded by six L cones
was more likely to have a higher threshold than an M cone situ-
ated in a more homogeneous patch of retina. This neighborhood
effect appears to raise thresholds in a subset of cones in a predict-
able fashion and thus increases the variability in thresholds ob-
tained from each cone population.

We considered two mechanisms that might explain this effect,
but found that both can be ruled out. First, we investigated
whether uncorrected defocus in our stimulation light could ac-
count for the systematic rise in threshold. If the stimulus light was
distributed across multiple rather than single receptors, then the
threshold attributed to the targeted cone would depend on the

average sensitivity of its local neighborhood. An optical model of
light capture in the cone mosaic, developed previously to account
for the spatial grain of achromatic sensitivity in the parafovea
(Harmening et al., 2014), confirmed that the observed threshold
elevation would be governed only in small part by the spatial
spread in our stimulus (Fig. 4). Undetected stimulus spread
equivalent to 0.15 D of defocus was required to minimize the
error between the observed and predicted data (Fig. 4D). This
value is threefold higher than that estimated from an indepen-
dent psychophysical experiment performed on the same stimu-
lation platform and with the same subjects (Harmening et al.,
2014). In confocal imaging systems, axial and lateral resolution
degrades quickly with increasing defocus, compromising image
quality. Because retinal videos were monitored continuously and
recorded during stimulus presentation, a blur of that magnitude
is unlikely to have occurred during our experiments.

Second, cones coupled by gap junctions may underpin a
neighborhood effect (Hsu et al., 2000). Against chromatic back-
grounds, thresholds would be altered only if the surrounding
cones were of the opposite type than the targeted cone. We esti-
mated the magnitude of this effect based on cone coupling data
recorded in macaque retina (Hornstein et al., 2004) using a net-
work model (Detwiler and Hodgkin, 1979). The electrotonic
space constant of this network falls between 0.3 and 0.7 cone
spacings (see Materials and Methods), suggesting that only the
nearest cones would affect threshold substantially, as was found
previously (DeVries et al., 2002; Hornstein et al., 2004). For a
fully connected hexagonal array, this range of space constants
yielded voltage changes in neighboring cones that were 3.2– 6.6%
of the voltage shift due to the adapting light directly (Eq. 5). In the
limit at which all 6 adjacent cones are coupled to the test cone and
belonged to the class driven �1.5� more strongly by the back-
ground (as in our data; see Materials and Methods), the activity of
the central cone would be increased by, at most, 20%. This is akin
to increasing the effective background intensity by the same fac-
tor. The corresponding increase in cone threshold would be gov-
erned by the Weber–Fechner relationship (�I/I � constant),
leading to thresholds for a cone surrounded by six adapted cones
to be 20% higher than a cone situated in a homogenous patch.
With fewer adapted, coupled cones in the surround, the effect
would be smaller. Therefore, gap junctional coupling could ac-
count for only a small fraction of the �100% threshold increase
across the photoreceptor configurations as plotted in Figure 3.

If this neighborhood effect has a postreceptoral origin, then
the most likely mediators are horizontal cells, retinal interneu-
rons known to convey spatially antagonistic signals to cones. Pri-
mate retina contains two types of horizontal cells: H1 cells, which
receive equivalent functional input from L and M cones while
avoiding S cones, and H2 cells, which receive strong input from
the sparsely distributed S cones as well as modest input from L
and M cones (Dacey et al., 1996; Dacey et al., 2000). Because each
cone in the receptor mosaic synapses onto multiple H1 and H2
cells (Wässle et al., 2000), the elevated steady-state activity cre-
ated by the prolonged adapting field in one subset of cones (Nor-
mann and Perlman, 1979; Schnapf et al., 1990) may spread
through one or both of these horizontal cell networks to suppress
the sensitivity of nearby receptors driven less strongly by the
adapting wavelength.

To examine this potential role for horizontal cells, we devel-
oped two metrics of cone neighborhood spectral demographics
that incorporated known features of H1 and H2 cells (Fig. 5A; see
Materials and Methods). These indices were computed for each
cone in our subjects’ mosaics using the actual cone maps, taking

Figure 3. Relationship between cone thresholds and spectral demographics of neighboring
cones. A, L cone thresholds measured against a short-wavelength background increase with
each additional preferentially activated (M or S) neighboring cone. Data from S1 and S2 are
combined as described in the text. Solid line is a linear regression to the data (slope � 0.10;
r 2 � 0.23; p � 0.001). Dashed line is the maximum estimated neighborhood effect resulting
from electrical coupling between all adjacent cones (coupling slope � 0.033, corresponding to
a 3.3% increase in baseline activity per opposite-type neighbor; see Materials and Methods).
B, M cone threshold data analyzed as in A measured against a long-wavelength background.
Thresholds also increased as the cone neighborhood became more spectrally opponent
(slope � 0.09; r 2 � 0.14; p � 0.023).
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into account the distribution of receptor configurations encoun-
tered (Fig. 3). Figure 5B illustrates the effect of changing the
spatial weighting function radius on the relationship between
cone thresholds and the H1 and S cone proximity indices. Both L
and M cone data (measured against short- and long-wavelength
adapting fields, respectively) were best explained by H1 indices
computed across a short spatial dimension—a scale essentially
restricted to the test cone and its immediate neighbors (Fig. 5B,
top left). The optimal H1 weighting function radius was 4.91 �m
for L cones (r 2 � 0.24; F � 11.0; p � 0.001) and 7.78 �m for M
cones (r 2 � 0.17; F � 3.73; p � 0.035). This scale is consistent
with the trends observed in Figure 3 and is within a few microm-
eters of the dendritic field dimensions of human H1 cells (�9 �m
radius) at the eccentricity tested here (Fig. 5C; Kolb et al., 1992).
For comparison, the average spacing between cones at this
eccentricity was �5.8 �m (1.16 arcmin, assuming 60 arcmin �
300 �m). Allowing the relative weights of L and M cones into the
H1 index to vary freely did not outperform a model in which
individual L and M cone input weights were constrained to be
equal (L cone data: F � 0.384, p � 0.538; M cone data: F � 2.08,
p � 0.159). Enlarging the H1-weighting function radius (Fig. 5B,
top right) increases the contribution of more distant cones to the
computed index until, eventually, enough receptors are included
that the indices for L and M cones coalesce around abscissa values
that reflect the subject’s global L:M ratio. As a result, the H1
opponency index explains less threshold variance when used over
larger spatial scales.

We also examined the effect of S cone proximity alone on L
and M cone thresholds. For L cones measured against a 470 nm

background, thresholds were best predicted by an S cone prox-
imity index computed using a radius of 18.8 �m (Fig. 5B, bottom
right; r 2 � 0.18; F � 8.82; p � 0.001), a scale similar to the
morphology of H2 horizontal cells that receive robust S cone
input (Fig. 5C; Kolb et al., 1992). In contrast, S cone proximity
exerted no influence on M cone thresholds obtained against a
710 nm background (Fig. 5B, bottom; optimal radius: 34.4 �m;
r 2 � 0.002; F � 0.04; p � 0.964), a predictable outcome given that
S cones were not activated by the stimulating or background
wavelengths (Stockman et al., 1999).

Finally, because each L cone in the mosaic is connected to both
the H1 and H2 cell networks, it is possible the lateral interactions
that we observed could be best explained by both circuits operat-
ing interdependently at distinct spatial scales. With this in mind,
we used multiple regression to examine the relative effects of the
H1 and S cone proximity indices on L cone thresholds. Incorpo-
rating the H1 and S cone proximity indices into a multiple regres-
sion model accounts for 23% more of the variance in L cone
thresholds. Nested model testing confirmed that including the S
cone term improves model performance relative to the H1 term
alone (r 2 � 0.294; F � 4.31; p � 0.042). Together, these results
suggest that cone thresholds are influenced by activity in neigh-
boring cones and that this influence can be mediated by both H1
and H2 cells.

Discussion
Color vision in humans hinges on two key features of the visual
system. First, a trichromatic array of photoreceptors samples the
retinal image, transducing incident photons into neural signals.

Figure 4. Residual stimulus blur does not account for cone detection variability. A, 2D sensitivity maps predicted by a model of light capture in the cone mosaic of Subject 2 (see Materials and
Methods) computed using the expected sensitivities of the three cone classes during M cone adaptation. The defocus values indicated in each panel (given in diopters, D) are those incorporated into
the stimulus to estimate the effects of poor spatial control of our test probe. Spatial variation in thresholds becomes smaller with increasingly blurred stimuli. B, Measured thresholds from Figure 2D
are replotted here for comparison with the model predictions. C, Difference plots for the maps in A and B. Darker spots correspond to cones with sensitivity that is lower than the model prediction.
Root mean squared errors (RMSEs) are computed from the difference maps to assess model performance. D, Average RMSE from the four datasets shown in Figure 2 (2 subjects � 2 adaptation
conditions) plotted as a function of stimulus defocus in diopters. Error bars � �1 SD. The RMSE asymptotes near 0.15 D, �3 times higher than previous estimates of residual defocus for AO
stimulation (0.05 diopters; dashed line; Harmening et al., 2014), suggesting that threshold variation cannot be attributed solely to optical defocus.
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Next, the chromatic information encoded in the cone signals is
extracted by neural machinery capable of monitoring the relative
activity of the three receptor types (Solomon and Lennie, 2007).
We used AO microstimulation (Fig. 1) to examine the link be-
tween detection thresholds and the cellular topography of the L,
M, and S cones in the human parafovea, obtaining maps of
single-cone sensitivity that not only reflect the peak spectral sen-
sitivity of the underlying mosaic of cone pigments, but also reveal
cellular scale spatial interactions that could have implications for
the postreceptoral circuitry involved in color signaling. Our re-
sults build upon recent work in which single-cone stimulation is
used to elucidate how the cellular architecture of the photorecep-
tor mosaic shapes vision (Harmening et al., 2014; Bruce et al.,
2015; Sabesan et al., 2016; Sincich et al., 2016).

Relatively little was known about the packing arrangement of
the three primate cone types until the advent of AO densitometry
(Roorda and Williams, 1999; Hofer et al., 2005b). Although the
primary findings from these studies—that L and M cones exist in
varying proportions and degrees of random arrangement among
color-normal subjects—were consistent with observations ob-
tained using either in vitro (Mollon and Bowmaker, 1992) or
indirect (Rushton and Baker, 1964; Cicerone and Nerger, 1989;
Carroll et al., 2000) methods, the densitometric technique has yet
to be corroborated at the cellular scale. Such an effort is needed
because the photoreceptor topographies yielded by this approach
undergird a number of theories related to color vision, ranging
from hypotheses about the principles guiding cone mosaic devel-
opment (Deeb, 2006; Knoblauch et al., 2006) to models of how

Figure 5. Preferentially activated neighbors influence single-cone thresholds at a spatial scale consistent with human horizontal cell anatomy. A, Schema of H1 and S cone proximity indices. In
these examples, the neighborhood indices are computed for the central L cone in each cluster. Each neighboring cone’s contribution to the index is weighted by its proximity to the central cone (width
of connectivity lines). For model details, see Materials and Methods. B, L and M cone thresholds plotted as a function of H1 and S-cone proximity indices computed independently for two example
radii. Data and regression fits in red are for L cones, those in green are for M cones. C, Optimal H1 and S cone proximity weighting function radii for L and M cone threshold data (red and green circles,
respectively). M cone marker is placed at y � 0 because S cone proximity had no effect on thresholds obtained against a long wavelength background. Error bars represent the 95% confidence
intervals of the fitted parameters. These radii closely match human H1 and H2 horizontal cell dendritic field dimensions (solid and dashed gray lines, respectively) measured histologically at the same
eccentricity (Kolb et al., 1992).
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the visual system constructs spatiochromatic percepts from the
ambiguous outputs of individual cones (Hofer et al., 2005a;
Brainard et al., 2008; Sabesan et al., 2016).

The good agreement between our single-cone psychophysical
assignments of spectral type and their biophysical counterparts
provides the first independent validation of AO densitometry
undertaken at the cellular level. Measured against chromatic
backgrounds, single-cone thresholds for L and M photoreceptors
(as defined by densitometry) shifted, on average, in predictable
directions (Fig. 2G,H). Nevertheless, the agreement that we ob-
served between the two classification approaches was not perfect,
a result that could be attributed to a number of factors. For in-
stance, densitometric misclassifications would place an upper
limit on the agreement between the two techniques. The assign-
ment uncertainty estimated in previous densitometry studies
hovers around 5% (Hofer et al., 2005b; Sabesan et al., 2015). It
has been suggested this error arises primarily from optical blur
and cone reflectance variability during absorptance imaging.
This error may result in a mosaic with artificially clumped
patches of like-type cones (Hofer et al., 2005b). If errors of this
sort were influencing our data, then one might expect that cones
performing against densitometric type would feature low assign-
ment probabilities and be situated in spectrally homogenous
clusters. Our data are inconsistent with both of these predictions:
excluding low-confidence cones failed to improve classification
agreement (Fig. 2I) and functionally idiosyncratic cones tended
to reside in spectrally opponent cone neighborhoods (Fig. 3).

Instead, our results suggest that a cone’s sensitivity to briefly
flashed stimuli depends not only on its endogenous photopig-
ment, but also on the steady-state activity in nearby receptors. For
both L and M cones, thresholds were elevated systematically with
the addition of each opposite-type neighbor with a baseline ac-
tivity that was increased by the chromatic background (Fig. 3).
The neighborhood effects that we measured exceeded the eleva-
tion estimated by a model of light spread in our AO-corrected
stimulus (Fig. 4; Harmening et al., 2014), consistent with previ-
ous demonstrations that the resolution achievable with AO is
sufficient to probe vision at the scale of single cones (Makous et
al., 2006; Sincich et al., 2009; Rossi and Roorda, 2010; Ratnam et
al., 2017).

Having ruled out an exclusively optical explanation, our re-
sults point toward a neural basis for the photoreceptor interac-
tions that we observed. The relationship evident in Figure 3
demonstrates that sensitivity under conditions in which steady-
state activity is biased toward either L or M cones is governed by
the local L–M ratio, implying that the neural mediator of these
interactions assimilates L and M cone signals indiscriminately.
Horizontal cells, a first-order source of lateral inhibition, fulfill
this criterion, with anatomical and physiological evidence sug-
gesting that they contact all L and M cones residing within their
dendritic fields (Wässle et al., 1989; Dacey et al., 1996; Dacey et
al., 2000). Accordingly, we created spatially weighted metrics of
cone neighborhood demographics that incorporated known
properties of peripheral H1 and H2 cells. The spatial scales at
which these opponency indices best accounted for the threshold
data were close to the dimensions of horizontal cell dendritic
fields in the human parafovea (Fig. 5).

Although this finding supports a role for horizontal cells in
mediating the interactions that we observed, it is worth consid-
ering a few alternative routes for the lateral spread of steady-state
photoreceptor activity. First, individual primate L and M cones
couple capriciously with some, but not all, of their adjacent
neighbors via gap junctions (Hornstein et al., 2004). Gap

junction-mediated signal transfer is confined to the central cone
and its immediate neighbors (DeVries et al., 2002). However, the
neighborhood effect was too large to be explained by gap junction
coupling between cones because we estimated that the voltage
spread would shift thresholds by, at most, only a few percentage
points for each coupled cone under our stimulus conditions.
Moreover, the suppressive influence of S cone proximity on L
cone thresholds (operating at a scale spanning multiple cones and
consistent with the anatomy of H2 cells) could not be mediated
by gap junctions because S cones are not electrically coupled with
L or M cones (Hornstein et al., 2004). Second, it is also possible
that lateral inhibition occurring in the inner retina, mediated by
amacrine cells, could account for our data. Like horizontal cells,
amacrine cells do not appear to distinguish between L and M
cones (Calkins and Sterling, 1996), but recent histochemical and
physiological evidence suggests that these interneurons may play
less of a role in shaping cone-driven signals in the central retina
than was thought previously (Sinha et al., 2017).

Our results suggest that adapting signals pool spatially across
neighboring parafoveal cones and thus have implications for
mechanisms of sensitivity regulation in the retina. Previous in-
vestigations have shown that adaptational processes operate at
multiple spatial and temporal scales, as well as at different stages
of the visual pathway (Hood, 1998; Dunn et al., 2007). Rapid
cone-driven adaptation appears to be highly localized, likely con-
fined to individual photoreceptors (MacLeod et al., 1992; Lee et
al., 1999). Conversely, over a longer time course (�10 s), a second
mechanism of sensitivity regulation appears to be present (Hay-
hoe et al., 1992), one that would be engaged by our prolonged
adapting field to yield an inhibitory effect. Analysis of in vitro
physiological recordings suggests that horizontal cells are capable
of mediating this type of slow, spatially expansive feedback (van
Hateren, 2007; Zhang et al., 2011).

Pooling across a modest number of photoreceptors would
reduce noise and improve the fidelity of the adapting signal
(Rieke and Rudd, 2009), but it is not clear what the cost of aver-
aging across cone classes would be for color vision. Indiscrimi-
nate mixing of signals from adjacent L and M cones could reduce
chromatic discrimination by effectively reducing the differences
in their spectral sensitivities (Hsu et al., 2000; Hornstein et al.,
2004), though this effect might be mitigated by the clumpy ar-
rangement of the trichromatic cone mosaic (Hofer et al., 2005b).
Spectral blurring across these small spatial scales would be con-
sistent with the relatively lower spatial resolution of the chro-
matic pathways (Mullen, 1985; Sekiguchi et al., 1993). Such a
scheme is also compatible with the recent finding that tiny mono-
chromatic flashes presented to individual parafoveal cones in
mixed neighborhoods predominately elicited achromatic per-
cepts, whereas stimuli delivered to clusters of like-type cones
tended to produce hue senstations (Sabesan et al., 2016).

Our visual world is rich with spectral information, but if hues are
to be finely discriminated, then cone-specific circuitry must exist at
some stage of the visual system. In the S cone pathway, cone-selective
wiring emerges in the retina, where short-wavelength receptor sig-
nals are transmitted predominantly through a retinogeniculate cir-
cuit implicated in blue–yellow color vision (Mariani, 1984; Dacey
and Lee, 1994; Dacey et al., 1996; Martin et al., 1997; Chichilnisky
and Baylor, 1999; Field et al., 2007; Crook et al., 2009). Whether the
L and M cone signals that underlie red–green color vision are simi-
larly partitioned in the central retinal circuitry has remained a less
tractable problem, with recordings from downstream neurons yield-
ing equivocal results (Reid and Shapley, 1992, 2002; Diller et al.,
2004; Buzás et al., 2006). Our results are consistent with the interpre-
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tation that parafoveal L and M cones feed into the surround-forming
circuitry indiscriminately, similar to the wiring patterns observed in
peripheral ganglion cells (Field et al., 2010), thereby shifting the bur-
den of separating L and M cone signals to higher visual areas, which
may achieve this feat using the statistics of L and M cone responses to
natural stimuli (Wachtler et al., 2007; Brainard et al., 2008; Benson et
al., 2014).
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